rt_gccstream/gcc/graphite-poly.h

1529 lines
37 KiB
C

/* Graphite polyhedral representation.
Copyright (C) 2009, 2010 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com> and
Tobias Grosser <grosser@fim.uni-passau.de>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_GRAPHITE_POLY_H
#define GCC_GRAPHITE_POLY_H
typedef struct poly_dr *poly_dr_p;
DEF_VEC_P(poly_dr_p);
DEF_VEC_ALLOC_P (poly_dr_p, heap);
typedef struct poly_bb *poly_bb_p;
DEF_VEC_P(poly_bb_p);
DEF_VEC_ALLOC_P (poly_bb_p, heap);
typedef struct scop *scop_p;
DEF_VEC_P(scop_p);
DEF_VEC_ALLOC_P (scop_p, heap);
typedef ppl_dimension_type graphite_dim_t;
static inline graphite_dim_t pbb_dim_iter_domain (const struct poly_bb *);
static inline graphite_dim_t pbb_nb_params (const struct poly_bb *);
static inline graphite_dim_t scop_nb_params (scop_p);
/* A data reference can write or read some memory or we
just know it may write some memory. */
enum poly_dr_type
{
PDR_READ,
/* PDR_MAY_READs are represented using PDR_READS. This does not
limit the expressiveness. */
PDR_WRITE,
PDR_MAY_WRITE
};
struct poly_dr
{
/* An identifier for this PDR. */
int id;
/* The number of data refs identical to this one in the PBB. */
int nb_refs;
/* A pointer to compiler's data reference description. */
void *compiler_dr;
/* A pointer to the PBB that contains this data reference. */
poly_bb_p pbb;
enum poly_dr_type type;
/* The access polyhedron contains the polyhedral space this data
reference will access.
The polyhedron contains these dimensions:
- The alias set (a):
Every memory access is classified in at least one alias set.
- The subscripts (s_0, ..., s_n):
The memory is accessed using zero or more subscript dimensions.
- The iteration domain (variables and parameters)
Do not hardcode the dimensions. Use the following accessor functions:
- pdr_alias_set_dim
- pdr_subscript_dim
- pdr_iterator_dim
- pdr_parameter_dim
Example:
| int A[1335][123];
| int *p = malloc ();
|
| k = ...
| for i
| {
| if (unknown_function ())
| p = A;
| ... = p[?][?];
| for j
| A[i][j+k] = m;
| }
The data access A[i][j+k] in alias set "5" is described like this:
| i j k a s0 s1 1
| 0 0 0 1 0 0 -5 = 0
|-1 0 0 0 1 0 0 = 0
| 0 -1 -1 0 0 1 0 = 0
| 0 0 0 0 1 0 0 >= 0 # The last four lines describe the
| 0 0 0 0 0 1 0 >= 0 # array size.
| 0 0 0 0 -1 0 1335 >= 0
| 0 0 0 0 0 -1 123 >= 0
The pointer "*p" in alias set "5" and "7" is described as a union of
polyhedron:
| i k a s0 1
| 0 0 1 0 -5 = 0
| 0 0 0 1 0 >= 0
"or"
| i k a s0 1
| 0 0 1 0 -7 = 0
| 0 0 0 1 0 >= 0
"*p" accesses all of the object allocated with 'malloc'.
The scalar data access "m" is represented as an array with zero subscript
dimensions.
| i j k a 1
| 0 0 0 -1 15 = 0 */
ppl_Pointset_Powerset_C_Polyhedron_t accesses;
/* Data reference's base object set number, we must assure 2 pdrs are in the
same base object set before dependency checking. */
int dr_base_object_set;
/* The number of subscripts. */
graphite_dim_t nb_subscripts;
};
#define PDR_ID(PDR) (PDR->id)
#define PDR_NB_REFS(PDR) (PDR->nb_refs)
#define PDR_CDR(PDR) (PDR->compiler_dr)
#define PDR_PBB(PDR) (PDR->pbb)
#define PDR_TYPE(PDR) (PDR->type)
#define PDR_ACCESSES(PDR) (PDR->accesses)
#define PDR_BASE_OBJECT_SET(PDR) (PDR->dr_base_object_set)
#define PDR_NB_SUBSCRIPTS(PDR) (PDR->nb_subscripts)
void new_poly_dr (poly_bb_p, int, ppl_Pointset_Powerset_C_Polyhedron_t,
enum poly_dr_type, void *, graphite_dim_t);
void free_poly_dr (poly_dr_p);
void debug_pdr (poly_dr_p, int);
void print_pdr (FILE *, poly_dr_p, int);
static inline scop_p pdr_scop (poly_dr_p pdr);
/* The dimension of the PDR_ACCESSES polyhedron of PDR. */
static inline ppl_dimension_type
pdr_dim (poly_dr_p pdr)
{
ppl_dimension_type dim;
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PDR_ACCESSES (pdr),
&dim);
return dim;
}
/* The dimension of the iteration domain of the scop of PDR. */
static inline ppl_dimension_type
pdr_dim_iter_domain (poly_dr_p pdr)
{
return pbb_dim_iter_domain (PDR_PBB (pdr));
}
/* The number of parameters of the scop of PDR. */
static inline ppl_dimension_type
pdr_nb_params (poly_dr_p pdr)
{
return scop_nb_params (pdr_scop (pdr));
}
/* The dimension of the alias set in PDR. */
static inline ppl_dimension_type
pdr_alias_set_dim (poly_dr_p pdr)
{
poly_bb_p pbb = PDR_PBB (pdr);
return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
}
/* The dimension in PDR containing subscript S. */
static inline ppl_dimension_type
pdr_subscript_dim (poly_dr_p pdr, graphite_dim_t s)
{
poly_bb_p pbb = PDR_PBB (pdr);
return pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb) + 1 + s;
}
/* The dimension in PDR containing the loop iterator ITER. */
static inline ppl_dimension_type
pdr_iterator_dim (poly_dr_p pdr ATTRIBUTE_UNUSED, graphite_dim_t iter)
{
return iter;
}
/* The dimension in PDR containing parameter PARAM. */
static inline ppl_dimension_type
pdr_parameter_dim (poly_dr_p pdr, graphite_dim_t param)
{
poly_bb_p pbb = PDR_PBB (pdr);
return pbb_dim_iter_domain (pbb) + param;
}
/* Returns true when PDR is a "read". */
static inline bool
pdr_read_p (poly_dr_p pdr)
{
return PDR_TYPE (pdr) == PDR_READ;
}
/* Returns true when PDR is a "write". */
static inline bool
pdr_write_p (poly_dr_p pdr)
{
return PDR_TYPE (pdr) == PDR_WRITE;
}
/* Returns true when PDR is a "may write". */
static inline bool
pdr_may_write_p (poly_dr_p pdr)
{
return PDR_TYPE (pdr) == PDR_MAY_WRITE;
}
/* Return true when PDR1 and PDR2 are similar data accesses: they have
the same base array, and the same access functions. */
static inline bool
same_pdr_p (poly_dr_p pdr1, poly_dr_p pdr2)
{
return PDR_TYPE (pdr1) == PDR_TYPE (pdr2)
&& PDR_NB_SUBSCRIPTS (pdr1) == PDR_NB_SUBSCRIPTS (pdr2)
&& PDR_BASE_OBJECT_SET (pdr1) == PDR_BASE_OBJECT_SET (pdr2);
}
typedef struct poly_scattering *poly_scattering_p;
struct poly_scattering
{
/* The scattering function containing the transformations: the
layout of this polyhedron is: T|I|G with T the transform
scattering, I the iteration domain, G the context parameters. */
ppl_Polyhedron_t scattering;
/* The number of local variables. */
int nb_local_variables;
/* The number of scattering dimensions. */
int nb_scattering;
};
/* POLY_BB represents a blackbox in the polyhedral model. */
struct poly_bb
{
/* Pointer to a basic block or a statement in the compiler. */
void *black_box;
/* Pointer to the SCOP containing this PBB. */
scop_p scop;
/* The iteration domain of this bb. The layout of this polyhedron
is I|G with I the iteration domain, G the context parameters.
Example:
for (i = a - 7*b + 8; i <= 3*a + 13*b + 20; i++)
for (j = 2; j <= 2*i + 5; j++)
for (k = 0; k <= 5; k++)
S (i,j,k)
Loop iterators: i, j, k
Parameters: a, b
| i >= a - 7b + 8
| i <= 3a + 13b + 20
| j >= 2
| j <= 2i + 5
| k >= 0
| k <= 5
The number of variables in the DOMAIN may change and is not
related to the number of loops in the original code. */
ppl_Pointset_Powerset_C_Polyhedron_t domain;
/* The data references we access. */
VEC (poly_dr_p, heap) *drs;
/* The original scattering. */
poly_scattering_p original;
/* The transformed scattering. */
poly_scattering_p transformed;
/* A copy of the transformed scattering. */
poly_scattering_p saved;
/* True when the PDR duplicates have already been removed. */
bool pdr_duplicates_removed;
/* True when this PBB contains only a reduction statement. */
bool is_reduction;
};
#define PBB_BLACK_BOX(PBB) ((gimple_bb_p) PBB->black_box)
#define PBB_SCOP(PBB) (PBB->scop)
#define PBB_DOMAIN(PBB) (PBB->domain)
#define PBB_DRS(PBB) (PBB->drs)
#define PBB_ORIGINAL(PBB) (PBB->original)
#define PBB_ORIGINAL_SCATTERING(PBB) (PBB->original->scattering)
#define PBB_TRANSFORMED(PBB) (PBB->transformed)
#define PBB_TRANSFORMED_SCATTERING(PBB) (PBB->transformed->scattering)
#define PBB_SAVED(PBB) (PBB->saved)
#define PBB_NB_LOCAL_VARIABLES(PBB) (PBB->transformed->nb_local_variables)
#define PBB_NB_SCATTERING_TRANSFORM(PBB) (PBB->transformed->nb_scattering)
#define PBB_PDR_DUPLICATES_REMOVED(PBB) (PBB->pdr_duplicates_removed)
#define PBB_IS_REDUCTION(PBB) (PBB->is_reduction)
extern void new_poly_bb (scop_p, void *, bool);
extern void free_poly_bb (poly_bb_p);
extern void debug_loop_vec (poly_bb_p);
extern void schedule_to_scattering (poly_bb_p, int);
extern void print_pbb_domain (FILE *, poly_bb_p, int);
extern void print_pbb (FILE *, poly_bb_p, int);
extern void print_scop_context (FILE *, scop_p, int);
extern void print_scop (FILE *, scop_p, int);
extern void print_cloog (FILE *, scop_p, int);
extern void debug_pbb_domain (poly_bb_p, int);
extern void debug_pbb (poly_bb_p, int);
extern void print_pdrs (FILE *, poly_bb_p, int);
extern void debug_pdrs (poly_bb_p, int);
extern void debug_scop_context (scop_p, int);
extern void debug_scop (scop_p, int);
extern void debug_cloog (scop_p, int);
extern void print_scop_params (FILE *, scop_p, int);
extern void debug_scop_params (scop_p, int);
extern void print_iteration_domain (FILE *, poly_bb_p, int);
extern void print_iteration_domains (FILE *, scop_p, int);
extern void debug_iteration_domain (poly_bb_p, int);
extern void debug_iteration_domains (scop_p, int);
extern bool scop_do_interchange (scop_p);
extern bool scop_do_strip_mine (scop_p);
extern bool scop_do_block (scop_p);
extern void pbb_number_of_iterations (poly_bb_p, graphite_dim_t, mpz_t);
extern void pbb_number_of_iterations_at_time (poly_bb_p, graphite_dim_t, mpz_t);
extern void pbb_remove_duplicate_pdrs (poly_bb_p);
/* Return the number of write data references in PBB. */
static inline int
number_of_write_pdrs (poly_bb_p pbb)
{
int res = 0;
int i;
poly_dr_p pdr;
for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++)
if (PDR_TYPE (pdr) == PDR_WRITE)
res++;
return res;
}
/* The basic block of the PBB. */
static inline basic_block
pbb_bb (poly_bb_p pbb)
{
return GBB_BB (PBB_BLACK_BOX (pbb));
}
/* The index of the PBB. */
static inline int
pbb_index (poly_bb_p pbb)
{
return pbb_bb (pbb)->index;
}
/* The loop of the PBB. */
static inline loop_p
pbb_loop (poly_bb_p pbb)
{
return gbb_loop (PBB_BLACK_BOX (pbb));
}
/* The scop that contains the PDR. */
static inline scop_p
pdr_scop (poly_dr_p pdr)
{
return PBB_SCOP (PDR_PBB (pdr));
}
/* Set black box of PBB to BLACKBOX. */
static inline void
pbb_set_black_box (poly_bb_p pbb, void *black_box)
{
pbb->black_box = black_box;
}
/* The number of loops around PBB: the dimension of the iteration
domain. */
static inline graphite_dim_t
pbb_dim_iter_domain (const struct poly_bb *pbb)
{
scop_p scop = PBB_SCOP (pbb);
ppl_dimension_type dim;
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb), &dim);
return dim - scop_nb_params (scop);
}
/* The number of params defined in PBB. */
static inline graphite_dim_t
pbb_nb_params (const struct poly_bb *pbb)
{
scop_p scop = PBB_SCOP (pbb);
return scop_nb_params (scop);
}
/* The number of scattering dimensions in the SCATTERING polyhedron
of a PBB for a given SCOP. */
static inline graphite_dim_t
pbb_nb_scattering_orig (const struct poly_bb *pbb)
{
return 2 * pbb_dim_iter_domain (pbb) + 1;
}
/* The number of scattering dimensions in PBB. */
static inline graphite_dim_t
pbb_nb_scattering_transform (const struct poly_bb *pbb)
{
return PBB_NB_SCATTERING_TRANSFORM (pbb);
}
/* The number of dynamic scattering dimensions in PBB. */
static inline graphite_dim_t
pbb_nb_dynamic_scattering_transform (const struct poly_bb *pbb)
{
/* This function requires the 2d + 1 scattering format to be
invariant during all transformations. */
gcc_assert (PBB_NB_SCATTERING_TRANSFORM (pbb) % 2);
return PBB_NB_SCATTERING_TRANSFORM (pbb) / 2;
}
/* Returns the number of local variables used in the transformed
scattering polyhedron of PBB. */
static inline graphite_dim_t
pbb_nb_local_vars (const struct poly_bb *pbb)
{
/* For now we do not have any local variables, as we do not do strip
mining for example. */
return PBB_NB_LOCAL_VARIABLES (pbb);
}
/* The dimension in the domain of PBB containing the iterator ITER. */
static inline ppl_dimension_type
pbb_iterator_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t iter)
{
return iter;
}
/* The dimension in the domain of PBB containing the iterator ITER. */
static inline ppl_dimension_type
pbb_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
{
return param
+ pbb_dim_iter_domain (pbb);
}
/* The dimension in the original scattering polyhedron of PBB
containing the scattering iterator SCATTER. */
static inline ppl_dimension_type
psco_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter)
{
gcc_assert (scatter < pbb_nb_scattering_orig (pbb));
return scatter;
}
/* The dimension in the transformed scattering polyhedron of PBB
containing the scattering iterator SCATTER. */
static inline ppl_dimension_type
psct_scattering_dim (poly_bb_p pbb ATTRIBUTE_UNUSED, graphite_dim_t scatter)
{
gcc_assert (scatter <= pbb_nb_scattering_transform (pbb));
return scatter;
}
ppl_dimension_type psct_scattering_dim_for_loop_depth (poly_bb_p,
graphite_dim_t);
/* The dimension in the transformed scattering polyhedron of PBB of
the local variable LV. */
static inline ppl_dimension_type
psct_local_var_dim (poly_bb_p pbb, graphite_dim_t lv)
{
gcc_assert (lv <= pbb_nb_local_vars (pbb));
return lv + pbb_nb_scattering_transform (pbb);
}
/* The dimension in the original scattering polyhedron of PBB
containing the loop iterator ITER. */
static inline ppl_dimension_type
psco_iterator_dim (poly_bb_p pbb, graphite_dim_t iter)
{
gcc_assert (iter < pbb_dim_iter_domain (pbb));
return iter + pbb_nb_scattering_orig (pbb);
}
/* The dimension in the transformed scattering polyhedron of PBB
containing the loop iterator ITER. */
static inline ppl_dimension_type
psct_iterator_dim (poly_bb_p pbb, graphite_dim_t iter)
{
gcc_assert (iter < pbb_dim_iter_domain (pbb));
return iter
+ pbb_nb_scattering_transform (pbb)
+ pbb_nb_local_vars (pbb);
}
/* The dimension in the original scattering polyhedron of PBB
containing parameter PARAM. */
static inline ppl_dimension_type
psco_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
{
gcc_assert (param < pbb_nb_params (pbb));
return param
+ pbb_nb_scattering_orig (pbb)
+ pbb_dim_iter_domain (pbb);
}
/* The dimension in the transformed scattering polyhedron of PBB
containing parameter PARAM. */
static inline ppl_dimension_type
psct_parameter_dim (poly_bb_p pbb, graphite_dim_t param)
{
gcc_assert (param < pbb_nb_params (pbb));
return param
+ pbb_nb_scattering_transform (pbb)
+ pbb_nb_local_vars (pbb)
+ pbb_dim_iter_domain (pbb);
}
/* The scattering dimension of PBB corresponding to the dynamic level
LEVEL. */
static inline ppl_dimension_type
psct_dynamic_dim (poly_bb_p pbb, graphite_dim_t level)
{
graphite_dim_t result = 1 + 2 * level;
gcc_assert (result < pbb_nb_scattering_transform (pbb));
return result;
}
/* The scattering dimension of PBB corresponding to the static
sequence of the loop level LEVEL. */
static inline ppl_dimension_type
psct_static_dim (poly_bb_p pbb, graphite_dim_t level)
{
graphite_dim_t result = 2 * level;
gcc_assert (result < pbb_nb_scattering_transform (pbb));
return result;
}
/* Adds to the transformed scattering polyhedron of PBB a new local
variable and returns its index. */
static inline graphite_dim_t
psct_add_local_variable (poly_bb_p pbb)
{
graphite_dim_t nlv = pbb_nb_local_vars (pbb);
ppl_dimension_type lv_column = psct_local_var_dim (pbb, nlv);
ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), lv_column, 1);
PBB_NB_LOCAL_VARIABLES (pbb) += 1;
return nlv;
}
/* Adds a dimension to the transformed scattering polyhedron of PBB at
INDEX. */
static inline void
psct_add_scattering_dimension (poly_bb_p pbb, ppl_dimension_type index)
{
gcc_assert (index < pbb_nb_scattering_transform (pbb));
ppl_insert_dimensions (PBB_TRANSFORMED_SCATTERING (pbb), index, 1);
PBB_NB_SCATTERING_TRANSFORM (pbb) += 1;
}
typedef struct lst *lst_p;
DEF_VEC_P(lst_p);
DEF_VEC_ALLOC_P (lst_p, heap);
/* Loops and Statements Tree. */
struct lst {
/* LOOP_P is true when an LST node is a loop. */
bool loop_p;
/* A pointer to the loop that contains this node. */
lst_p loop_father;
/* The sum of all the memory strides for an LST loop. */
mpz_t memory_strides;
/* Loop nodes contain a sequence SEQ of LST nodes, statements
contain a pointer to their polyhedral representation PBB. */
union {
poly_bb_p pbb;
VEC (lst_p, heap) *seq;
} node;
};
#define LST_LOOP_P(LST) ((LST)->loop_p)
#define LST_LOOP_FATHER(LST) ((LST)->loop_father)
#define LST_PBB(LST) ((LST)->node.pbb)
#define LST_SEQ(LST) ((LST)->node.seq)
#define LST_LOOP_MEMORY_STRIDES(LST) ((LST)->memory_strides)
void scop_to_lst (scop_p);
void print_lst (FILE *, lst_p, int);
void debug_lst (lst_p);
void dot_lst (lst_p);
/* Creates a new LST loop with SEQ. */
static inline lst_p
new_lst_loop (VEC (lst_p, heap) *seq)
{
lst_p lst = XNEW (struct lst);
int i;
lst_p l;
LST_LOOP_P (lst) = true;
LST_SEQ (lst) = seq;
LST_LOOP_FATHER (lst) = NULL;
mpz_init (LST_LOOP_MEMORY_STRIDES (lst));
mpz_set_si (LST_LOOP_MEMORY_STRIDES (lst), -1);
for (i = 0; VEC_iterate (lst_p, seq, i, l); i++)
LST_LOOP_FATHER (l) = lst;
return lst;
}
/* Creates a new LST statement with PBB. */
static inline lst_p
new_lst_stmt (poly_bb_p pbb)
{
lst_p lst = XNEW (struct lst);
LST_LOOP_P (lst) = false;
LST_PBB (lst) = pbb;
LST_LOOP_FATHER (lst) = NULL;
return lst;
}
/* Frees the memory used by LST. */
static inline void
free_lst (lst_p lst)
{
if (!lst)
return;
if (LST_LOOP_P (lst))
{
int i;
lst_p l;
for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
free_lst (l);
mpz_clear (LST_LOOP_MEMORY_STRIDES (lst));
VEC_free (lst_p, heap, LST_SEQ (lst));
}
free (lst);
}
/* Returns a copy of LST. */
static inline lst_p
copy_lst (lst_p lst)
{
if (!lst)
return NULL;
if (LST_LOOP_P (lst))
{
int i;
lst_p l;
VEC (lst_p, heap) *seq = VEC_alloc (lst_p, heap, 5);
for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
VEC_safe_push (lst_p, heap, seq, copy_lst (l));
return new_lst_loop (seq);
}
return new_lst_stmt (LST_PBB (lst));
}
/* Adds a new loop under the loop LST. */
static inline void
lst_add_loop_under_loop (lst_p lst)
{
VEC (lst_p, heap) *seq = VEC_alloc (lst_p, heap, 1);
lst_p l = new_lst_loop (LST_SEQ (lst));
gcc_assert (LST_LOOP_P (lst));
LST_LOOP_FATHER (l) = lst;
VEC_quick_push (lst_p, seq, l);
LST_SEQ (lst) = seq;
}
/* Returns the loop depth of LST. */
static inline int
lst_depth (lst_p lst)
{
if (!lst)
return -2;
/* The depth of the outermost "fake" loop is -1. This outermost
loop does not have a loop father and it is just a container, as
in the loop representation of GCC. */
if (!LST_LOOP_FATHER (lst))
return -1;
return lst_depth (LST_LOOP_FATHER (lst)) + 1;
}
/* Returns the Dewey number for LST. */
static inline int
lst_dewey_number (lst_p lst)
{
int i;
lst_p l;
if (!lst)
return -1;
if (!LST_LOOP_FATHER (lst))
return 0;
for (i = 0; VEC_iterate (lst_p, LST_SEQ (LST_LOOP_FATHER (lst)), i, l); i++)
if (l == lst)
return i;
return -1;
}
/* Returns the Dewey number of LST at depth DEPTH. */
static inline int
lst_dewey_number_at_depth (lst_p lst, int depth)
{
gcc_assert (lst && depth >= 0 && lst_depth (lst) <= depth);
if (lst_depth (lst) == depth)
return lst_dewey_number (lst);
return lst_dewey_number_at_depth (LST_LOOP_FATHER (lst), depth);
}
/* Returns the predecessor of LST in the sequence of its loop father.
Returns NULL if LST is the first statement in the sequence. */
static inline lst_p
lst_pred (lst_p lst)
{
int dewey;
lst_p father;
if (!lst || !LST_LOOP_FATHER (lst))
return NULL;
dewey = lst_dewey_number (lst);
if (dewey == 0)
return NULL;
father = LST_LOOP_FATHER (lst);
return VEC_index (lst_p, LST_SEQ (father), dewey - 1);
}
/* Returns the successor of LST in the sequence of its loop father.
Returns NULL if there is none. */
static inline lst_p
lst_succ (lst_p lst)
{
int dewey;
lst_p father;
if (!lst || !LST_LOOP_FATHER (lst))
return NULL;
dewey = lst_dewey_number (lst);
father = LST_LOOP_FATHER (lst);
if (VEC_length (lst_p, LST_SEQ (father)) == (unsigned) dewey + 1)
return NULL;
return VEC_index (lst_p, LST_SEQ (father), dewey + 1);
}
/* Return the LST node corresponding to PBB. */
static inline lst_p
lst_find_pbb (lst_p lst, poly_bb_p pbb)
{
int i;
lst_p l;
if (!lst)
return NULL;
if (!LST_LOOP_P (lst))
return (pbb == LST_PBB (lst)) ? lst : NULL;
for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
{
lst_p res = lst_find_pbb (l, pbb);
if (res)
return res;
}
return NULL;
}
/* Return the LST node corresponding to the loop around STMT at depth
LOOP_DEPTH. */
static inline lst_p
find_lst_loop (lst_p stmt, int loop_depth)
{
lst_p loop = LST_LOOP_FATHER (stmt);
gcc_assert (loop_depth >= 0);
while (loop_depth < lst_depth (loop))
loop = LST_LOOP_FATHER (loop);
return loop;
}
/* Return the first lst representing a PBB statement in LST. */
static inline lst_p
lst_find_first_pbb (lst_p lst)
{
int i;
lst_p l;
if (!lst)
return NULL;
if (!LST_LOOP_P (lst))
return lst;
for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
{
lst_p res = lst_find_first_pbb (l);
if (res)
return res;
}
return NULL;
}
/* Returns true when LST is a loop that does not contains
statements. */
static inline bool
lst_empty_p (lst_p lst)
{
return !lst_find_first_pbb (lst);
}
/* Return the last lst representing a PBB statement in LST. */
static inline lst_p
lst_find_last_pbb (lst_p lst)
{
int i;
lst_p l, res = NULL;
if (!lst)
return NULL;
if (!LST_LOOP_P (lst))
return lst;
for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
{
lst_p last = lst_find_last_pbb (l);
if (last)
res = last;
}
gcc_assert (res);
return res;
}
/* Returns true if LOOP contains LST, in other words, if LST is nested
in LOOP. */
static inline bool
lst_contains_p (lst_p loop, lst_p lst)
{
if (!loop || !lst || !LST_LOOP_P (loop))
return false;
if (loop == lst)
return true;
return lst_contains_p (loop, LST_LOOP_FATHER (lst));
}
/* Returns true if LOOP contains PBB, in other words, if PBB is nested
in LOOP. */
static inline bool
lst_contains_pbb (lst_p loop, poly_bb_p pbb)
{
return lst_find_pbb (loop, pbb) ? true : false;
}
/* Creates a loop nest of depth NB_LOOPS containing LST. */
static inline lst_p
lst_create_nest (int nb_loops, lst_p lst)
{
lst_p res, loop;
VEC (lst_p, heap) *seq;
if (nb_loops == 0)
return lst;
seq = VEC_alloc (lst_p, heap, 1);
loop = lst_create_nest (nb_loops - 1, lst);
VEC_quick_push (lst_p, seq, loop);
res = new_lst_loop (seq);
LST_LOOP_FATHER (loop) = res;
return res;
}
/* Removes LST from the sequence of statements of its loop father. */
static inline void
lst_remove_from_sequence (lst_p lst)
{
lst_p father = LST_LOOP_FATHER (lst);
int dewey = lst_dewey_number (lst);
gcc_assert (lst && father && dewey >= 0);
VEC_ordered_remove (lst_p, LST_SEQ (father), dewey);
LST_LOOP_FATHER (lst) = NULL;
}
/* Updates the scattering of PBB to be at the DEWEY number in the loop
at depth LEVEL. */
static inline void
pbb_update_scattering (poly_bb_p pbb, graphite_dim_t level, int dewey)
{
ppl_Polyhedron_t ph = PBB_TRANSFORMED_SCATTERING (pbb);
ppl_dimension_type sched = psct_static_dim (pbb, level);
ppl_dimension_type ds[1];
ppl_Constraint_t new_cstr;
ppl_Linear_Expression_t expr;
ppl_dimension_type dim;
ppl_Polyhedron_space_dimension (ph, &dim);
ds[0] = sched;
ppl_Polyhedron_remove_space_dimensions (ph, ds, 1);
ppl_insert_dimensions (ph, sched, 1);
ppl_new_Linear_Expression_with_dimension (&expr, dim);
ppl_set_coef (expr, sched, -1);
ppl_set_inhomogeneous (expr, dewey);
ppl_new_Constraint (&new_cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
ppl_delete_Linear_Expression (expr);
ppl_Polyhedron_add_constraint (ph, new_cstr);
ppl_delete_Constraint (new_cstr);
}
/* Updates the scattering of all the PBBs under LST to be at the DEWEY
number in the loop at depth LEVEL. */
static inline void
lst_update_scattering_under (lst_p lst, int level, int dewey)
{
int i;
lst_p l;
gcc_assert (lst && level >= 0 && dewey >= 0);
if (LST_LOOP_P (lst))
for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
lst_update_scattering_under (l, level, dewey);
else
pbb_update_scattering (LST_PBB (lst), level, dewey);
}
/* Updates the scattering of all the PBBs under LST and in sequence
with LST. */
static inline void
lst_update_scattering_seq (lst_p lst)
{
int i;
lst_p l;
lst_p father = LST_LOOP_FATHER (lst);
int dewey = lst_dewey_number (lst);
int level = lst_depth (lst);
gcc_assert (lst && father && dewey >= 0 && level >= 0);
for (i = dewey; VEC_iterate (lst_p, LST_SEQ (father), i, l); i++)
lst_update_scattering_under (l, level, i);
}
/* Updates the all the scattering levels of all the PBBs under
LST. */
static inline void
lst_update_scattering (lst_p lst)
{
int i;
lst_p l;
if (!lst || !LST_LOOP_P (lst))
return;
if (LST_LOOP_FATHER (lst))
lst_update_scattering_seq (lst);
for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
lst_update_scattering (l);
}
/* Inserts LST1 before LST2 if BEFORE is true; inserts LST1 after LST2
if BEFORE is false. */
static inline void
lst_insert_in_sequence (lst_p lst1, lst_p lst2, bool before)
{
lst_p father;
int dewey;
/* Do not insert empty loops. */
if (!lst1 || lst_empty_p (lst1))
return;
father = LST_LOOP_FATHER (lst2);
dewey = lst_dewey_number (lst2);
gcc_assert (lst2 && father && dewey >= 0);
VEC_safe_insert (lst_p, heap, LST_SEQ (father), before ? dewey : dewey + 1,
lst1);
LST_LOOP_FATHER (lst1) = father;
}
/* Replaces LST1 with LST2. */
static inline void
lst_replace (lst_p lst1, lst_p lst2)
{
lst_p father;
int dewey;
if (!lst2 || lst_empty_p (lst2))
return;
father = LST_LOOP_FATHER (lst1);
dewey = lst_dewey_number (lst1);
LST_LOOP_FATHER (lst2) = father;
VEC_replace (lst_p, LST_SEQ (father), dewey, lst2);
}
/* Returns a copy of ROOT where LST has been replaced by a copy of the
LSTs A B C in this sequence. */
static inline lst_p
lst_substitute_3 (lst_p root, lst_p lst, lst_p a, lst_p b, lst_p c)
{
int i;
lst_p l;
VEC (lst_p, heap) *seq;
if (!root)
return NULL;
gcc_assert (lst && root != lst);
if (!LST_LOOP_P (root))
return new_lst_stmt (LST_PBB (root));
seq = VEC_alloc (lst_p, heap, 5);
for (i = 0; VEC_iterate (lst_p, LST_SEQ (root), i, l); i++)
if (l != lst)
VEC_safe_push (lst_p, heap, seq, lst_substitute_3 (l, lst, a, b, c));
else
{
if (!lst_empty_p (a))
VEC_safe_push (lst_p, heap, seq, copy_lst (a));
if (!lst_empty_p (b))
VEC_safe_push (lst_p, heap, seq, copy_lst (b));
if (!lst_empty_p (c))
VEC_safe_push (lst_p, heap, seq, copy_lst (c));
}
return new_lst_loop (seq);
}
/* Moves LST before LOOP if BEFORE is true, and after the LOOP if
BEFORE is false. */
static inline void
lst_distribute_lst (lst_p loop, lst_p lst, bool before)
{
int loop_depth = lst_depth (loop);
int depth = lst_depth (lst);
int nb_loops = depth - loop_depth;
gcc_assert (lst && loop && LST_LOOP_P (loop) && nb_loops > 0);
lst_remove_from_sequence (lst);
lst_insert_in_sequence (lst_create_nest (nb_loops, lst), loop, before);
}
/* Removes from LOOP all the statements before/after and including PBB
if BEFORE is true/false. Returns the negation of BEFORE when the
statement PBB has been found. */
static inline bool
lst_remove_all_before_including_pbb (lst_p loop, poly_bb_p pbb, bool before)
{
int i;
lst_p l;
if (!loop || !LST_LOOP_P (loop))
return before;
for (i = 0; VEC_iterate (lst_p, LST_SEQ (loop), i, l);)
if (LST_LOOP_P (l))
{
before = lst_remove_all_before_including_pbb (l, pbb, before);
if (VEC_length (lst_p, LST_SEQ (l)) == 0)
{
VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
free_lst (l);
}
else
i++;
}
else
{
if (before)
{
if (LST_PBB (l) == pbb)
before = false;
VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
free_lst (l);
}
else if (LST_PBB (l) == pbb)
{
before = true;
VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
free_lst (l);
}
else
i++;
}
return before;
}
/* Removes from LOOP all the statements before/after and excluding PBB
if BEFORE is true/false; Returns the negation of BEFORE when the
statement PBB has been found. */
static inline bool
lst_remove_all_before_excluding_pbb (lst_p loop, poly_bb_p pbb, bool before)
{
int i;
lst_p l;
if (!loop || !LST_LOOP_P (loop))
return before;
for (i = 0; VEC_iterate (lst_p, LST_SEQ (loop), i, l);)
if (LST_LOOP_P (l))
{
before = lst_remove_all_before_excluding_pbb (l, pbb, before);
if (VEC_length (lst_p, LST_SEQ (l)) == 0)
{
VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
free_lst (l);
continue;
}
i++;
}
else
{
if (before && LST_PBB (l) != pbb)
{
VEC_ordered_remove (lst_p, LST_SEQ (loop), i);
free_lst (l);
continue;
}
i++;
if (LST_PBB (l) == pbb)
before = before ? false : true;
}
return before;
}
/* A SCOP is a Static Control Part of the program, simple enough to be
represented in polyhedral form. */
struct scop
{
/* A SCOP is defined as a SESE region. */
void *region;
/* Number of parameters in SCoP. */
graphite_dim_t nb_params;
/* All the basic blocks in this scop that contain memory references
and that will be represented as statements in the polyhedral
representation. */
VEC (poly_bb_p, heap) *bbs;
/* Original, transformed and saved schedules. */
lst_p original_schedule, transformed_schedule, saved_schedule;
/* The context describes known restrictions concerning the parameters
and relations in between the parameters.
void f (int8_t a, uint_16_t b) {
c = 2 a + b;
...
}
Here we can add these restrictions to the context:
-128 >= a >= 127
0 >= b >= 65,535
c = 2a + b */
ppl_Pointset_Powerset_C_Polyhedron_t context;
/* A hashtable of the data dependence relations for the original
scattering. */
htab_t original_pddrs;
/* True when the scop has been converted to its polyhedral
representation. */
bool poly_scop_p;
};
#define SCOP_BBS(S) (S->bbs)
#define SCOP_REGION(S) ((sese) S->region)
#define SCOP_CONTEXT(S) (S->context)
#define SCOP_ORIGINAL_PDDRS(S) (S->original_pddrs)
#define SCOP_ORIGINAL_SCHEDULE(S) (S->original_schedule)
#define SCOP_TRANSFORMED_SCHEDULE(S) (S->transformed_schedule)
#define SCOP_SAVED_SCHEDULE(S) (S->saved_schedule)
#define POLY_SCOP_P(S) (S->poly_scop_p)
extern scop_p new_scop (void *);
extern void free_scop (scop_p);
extern void free_scops (VEC (scop_p, heap) *);
extern void print_generated_program (FILE *, scop_p);
extern void debug_generated_program (scop_p);
extern void print_scattering_function (FILE *, poly_bb_p, int);
extern void print_scattering_functions (FILE *, scop_p, int);
extern void debug_scattering_function (poly_bb_p, int);
extern void debug_scattering_functions (scop_p, int);
extern int scop_max_loop_depth (scop_p);
extern int unify_scattering_dimensions (scop_p);
extern bool apply_poly_transforms (scop_p);
extern bool graphite_legal_transform (scop_p);
/* Set the region of SCOP to REGION. */
static inline void
scop_set_region (scop_p scop, void *region)
{
scop->region = region;
}
/* Returns the number of parameters for SCOP. */
static inline graphite_dim_t
scop_nb_params (scop_p scop)
{
return scop->nb_params;
}
/* Set the number of params of SCOP to NB_PARAMS. */
static inline void
scop_set_nb_params (scop_p scop, graphite_dim_t nb_params)
{
scop->nb_params = nb_params;
}
/* Allocates a new empty poly_scattering structure. */
static inline poly_scattering_p
poly_scattering_new (void)
{
poly_scattering_p res = XNEW (struct poly_scattering);
res->scattering = NULL;
res->nb_local_variables = 0;
res->nb_scattering = 0;
return res;
}
/* Free a poly_scattering structure. */
static inline void
poly_scattering_free (poly_scattering_p s)
{
ppl_delete_Polyhedron (s->scattering);
free (s);
}
/* Copies S and return a new scattering. */
static inline poly_scattering_p
poly_scattering_copy (poly_scattering_p s)
{
poly_scattering_p res = poly_scattering_new ();
ppl_new_C_Polyhedron_from_C_Polyhedron (&(res->scattering), s->scattering);
res->nb_local_variables = s->nb_local_variables;
res->nb_scattering = s->nb_scattering;
return res;
}
/* Saves the transformed scattering of PBB. */
static inline void
store_scattering_pbb (poly_bb_p pbb)
{
gcc_assert (PBB_TRANSFORMED (pbb));
if (PBB_SAVED (pbb))
poly_scattering_free (PBB_SAVED (pbb));
PBB_SAVED (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
}
/* Stores the SCOP_TRANSFORMED_SCHEDULE to SCOP_SAVED_SCHEDULE. */
static inline void
store_lst_schedule (scop_p scop)
{
if (SCOP_SAVED_SCHEDULE (scop))
free_lst (SCOP_SAVED_SCHEDULE (scop));
SCOP_SAVED_SCHEDULE (scop) = copy_lst (SCOP_TRANSFORMED_SCHEDULE (scop));
}
/* Restores the SCOP_TRANSFORMED_SCHEDULE from SCOP_SAVED_SCHEDULE. */
static inline void
restore_lst_schedule (scop_p scop)
{
if (SCOP_TRANSFORMED_SCHEDULE (scop))
free_lst (SCOP_TRANSFORMED_SCHEDULE (scop));
SCOP_TRANSFORMED_SCHEDULE (scop) = copy_lst (SCOP_SAVED_SCHEDULE (scop));
}
/* Saves the scattering for all the pbbs in the SCOP. */
static inline void
store_scattering (scop_p scop)
{
int i;
poly_bb_p pbb;
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
store_scattering_pbb (pbb);
store_lst_schedule (scop);
}
/* Restores the scattering of PBB. */
static inline void
restore_scattering_pbb (poly_bb_p pbb)
{
gcc_assert (PBB_SAVED (pbb));
poly_scattering_free (PBB_TRANSFORMED (pbb));
PBB_TRANSFORMED (pbb) = poly_scattering_copy (PBB_SAVED (pbb));
}
/* Restores the scattering for all the pbbs in the SCOP. */
static inline void
restore_scattering (scop_p scop)
{
int i;
poly_bb_p pbb;
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
restore_scattering_pbb (pbb);
restore_lst_schedule (scop);
}
/* For a given PBB, add to RES the scop context, the iteration domain,
the original scattering when ORIGINAL_P is true, otherwise add the
transformed scattering. */
static inline void
combine_context_id_scat (ppl_Pointset_Powerset_C_Polyhedron_t *res,
poly_bb_p pbb, bool original_p)
{
ppl_Pointset_Powerset_C_Polyhedron_t context;
ppl_Pointset_Powerset_C_Polyhedron_t id;
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
(res, original_p ?
PBB_ORIGINAL_SCATTERING (pbb) : PBB_TRANSFORMED_SCATTERING (pbb));
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&context, SCOP_CONTEXT (PBB_SCOP (pbb)));
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&id, PBB_DOMAIN (pbb));
/* Extend the context and the iteration domain to the dimension of
the scattering: T|I|G. */
{
ppl_dimension_type gdim, tdim, idim;
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*res, &tdim);
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (context, &gdim);
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (id, &idim);
if (tdim > gdim)
ppl_insert_dimensions_pointset (context, 0, tdim - gdim);
if (tdim > idim)
ppl_insert_dimensions_pointset (id, 0, tdim - idim);
}
/* Add the context and the iteration domain to the result. */
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (*res, context);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (*res, id);
ppl_delete_Pointset_Powerset_C_Polyhedron (context);
ppl_delete_Pointset_Powerset_C_Polyhedron (id);
}
#endif