rt_gccstream/gcc/ada/sem_aux.adb

804 lines
23 KiB
Ada
Executable File

------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ A U X --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Einfo; use Einfo;
with Namet; use Namet;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
package body Sem_Aux is
----------------------
-- Ancestor_Subtype --
----------------------
function Ancestor_Subtype (Typ : Entity_Id) return Entity_Id is
begin
-- If this is first subtype, or is a base type, then there is no
-- ancestor subtype, so we return Empty to indicate this fact.
if Is_First_Subtype (Typ) or else Typ = Base_Type (Typ) then
return Empty;
end if;
declare
D : constant Node_Id := Declaration_Node (Typ);
begin
-- If we have a subtype declaration, get the ancestor subtype
if Nkind (D) = N_Subtype_Declaration then
if Nkind (Subtype_Indication (D)) = N_Subtype_Indication then
return Entity (Subtype_Mark (Subtype_Indication (D)));
else
return Entity (Subtype_Indication (D));
end if;
-- If not, then no subtype indication is available
else
return Empty;
end if;
end;
end Ancestor_Subtype;
--------------------
-- Available_View --
--------------------
function Available_View (Typ : Entity_Id) return Entity_Id is
begin
if Is_Incomplete_Type (Typ)
and then Present (Non_Limited_View (Typ))
then
-- The non-limited view may itself be an incomplete type, in which
-- case get its full view.
return Get_Full_View (Non_Limited_View (Typ));
elsif Is_Class_Wide_Type (Typ)
and then Is_Incomplete_Type (Etype (Typ))
and then Present (Non_Limited_View (Etype (Typ)))
then
return Class_Wide_Type (Non_Limited_View (Etype (Typ)));
else
return Typ;
end if;
end Available_View;
--------------------
-- Constant_Value --
--------------------
function Constant_Value (Ent : Entity_Id) return Node_Id is
D : constant Node_Id := Declaration_Node (Ent);
Full_D : Node_Id;
begin
-- If we have no declaration node, then return no constant value. Not
-- clear how this can happen, but it does sometimes and this is the
-- safest approach.
if No (D) then
return Empty;
-- Normal case where a declaration node is present
elsif Nkind (D) = N_Object_Renaming_Declaration then
return Renamed_Object (Ent);
-- If this is a component declaration whose entity is a constant, it is
-- a prival within a protected function (and so has no constant value).
elsif Nkind (D) = N_Component_Declaration then
return Empty;
-- If there is an expression, return it
elsif Present (Expression (D)) then
return (Expression (D));
-- For a constant, see if we have a full view
elsif Ekind (Ent) = E_Constant
and then Present (Full_View (Ent))
then
Full_D := Parent (Full_View (Ent));
-- The full view may have been rewritten as an object renaming
if Nkind (Full_D) = N_Object_Renaming_Declaration then
return Name (Full_D);
else
return Expression (Full_D);
end if;
-- Otherwise we have no expression to return
else
return Empty;
end if;
end Constant_Value;
-----------------------------
-- Enclosing_Dynamic_Scope --
-----------------------------
function Enclosing_Dynamic_Scope (Ent : Entity_Id) return Entity_Id is
S : Entity_Id;
begin
-- The following test is an error defense against some syntax errors
-- that can leave scopes very messed up.
if Ent = Standard_Standard then
return Ent;
end if;
-- Normal case, search enclosing scopes
-- Note: the test for Present (S) should not be required, it defends
-- against an ill-formed tree.
S := Scope (Ent);
loop
-- If we somehow got an empty value for Scope, the tree must be
-- malformed. Rather than blow up we return Standard in this case.
if No (S) then
return Standard_Standard;
-- Quit if we get to standard or a dynamic scope
elsif S = Standard_Standard
or else Is_Dynamic_Scope (S)
then
return S;
-- Otherwise keep climbing
else
S := Scope (S);
end if;
end loop;
end Enclosing_Dynamic_Scope;
------------------------
-- First_Discriminant --
------------------------
function First_Discriminant (Typ : Entity_Id) return Entity_Id is
Ent : Entity_Id;
begin
pragma Assert
(Has_Discriminants (Typ)
or else Has_Unknown_Discriminants (Typ));
Ent := First_Entity (Typ);
-- The discriminants are not necessarily contiguous, because access
-- discriminants will generate itypes. They are not the first entities
-- either, because tag and controller record must be ahead of them.
if Chars (Ent) = Name_uTag then
Ent := Next_Entity (Ent);
end if;
if Chars (Ent) = Name_uController then
Ent := Next_Entity (Ent);
end if;
-- Skip all hidden stored discriminants if any
while Present (Ent) loop
exit when Ekind (Ent) = E_Discriminant
and then not Is_Completely_Hidden (Ent);
Ent := Next_Entity (Ent);
end loop;
pragma Assert (Ekind (Ent) = E_Discriminant);
return Ent;
end First_Discriminant;
-------------------------------
-- First_Stored_Discriminant --
-------------------------------
function First_Stored_Discriminant (Typ : Entity_Id) return Entity_Id is
Ent : Entity_Id;
function Has_Completely_Hidden_Discriminant
(Typ : Entity_Id) return Boolean;
-- Scans the Discriminants to see whether any are Completely_Hidden
-- (the mechanism for describing non-specified stored discriminants)
----------------------------------------
-- Has_Completely_Hidden_Discriminant --
----------------------------------------
function Has_Completely_Hidden_Discriminant
(Typ : Entity_Id) return Boolean
is
Ent : Entity_Id;
begin
pragma Assert (Ekind (Typ) = E_Discriminant);
Ent := Typ;
while Present (Ent) and then Ekind (Ent) = E_Discriminant loop
if Is_Completely_Hidden (Ent) then
return True;
end if;
Ent := Next_Entity (Ent);
end loop;
return False;
end Has_Completely_Hidden_Discriminant;
-- Start of processing for First_Stored_Discriminant
begin
pragma Assert
(Has_Discriminants (Typ)
or else Has_Unknown_Discriminants (Typ));
Ent := First_Entity (Typ);
if Chars (Ent) = Name_uTag then
Ent := Next_Entity (Ent);
end if;
if Chars (Ent) = Name_uController then
Ent := Next_Entity (Ent);
end if;
if Has_Completely_Hidden_Discriminant (Ent) then
while Present (Ent) loop
exit when Is_Completely_Hidden (Ent);
Ent := Next_Entity (Ent);
end loop;
end if;
pragma Assert (Ekind (Ent) = E_Discriminant);
return Ent;
end First_Stored_Discriminant;
-------------------
-- First_Subtype --
-------------------
function First_Subtype (Typ : Entity_Id) return Entity_Id is
B : constant Entity_Id := Base_Type (Typ);
F : constant Node_Id := Freeze_Node (B);
Ent : Entity_Id;
begin
-- If the base type has no freeze node, it is a type in Standard,
-- and always acts as its own first subtype unless it is one of the
-- predefined integer types. If the type is formal, it is also a first
-- subtype, and its base type has no freeze node. On the other hand, a
-- subtype of a generic formal is not its own first subtype. Its base
-- type, if anonymous, is attached to the formal type decl. from which
-- the first subtype is obtained.
if No (F) then
if B = Base_Type (Standard_Integer) then
return Standard_Integer;
elsif B = Base_Type (Standard_Long_Integer) then
return Standard_Long_Integer;
elsif B = Base_Type (Standard_Short_Short_Integer) then
return Standard_Short_Short_Integer;
elsif B = Base_Type (Standard_Short_Integer) then
return Standard_Short_Integer;
elsif B = Base_Type (Standard_Long_Long_Integer) then
return Standard_Long_Long_Integer;
elsif Is_Generic_Type (Typ) then
if Present (Parent (B)) then
return Defining_Identifier (Parent (B));
else
return Defining_Identifier (Associated_Node_For_Itype (B));
end if;
else
return B;
end if;
-- Otherwise we check the freeze node, if it has a First_Subtype_Link
-- then we use that link, otherwise (happens with some Itypes), we use
-- the base type itself.
else
Ent := First_Subtype_Link (F);
if Present (Ent) then
return Ent;
else
return B;
end if;
end if;
end First_Subtype;
-------------------------
-- First_Tag_Component --
-------------------------
function First_Tag_Component (Typ : Entity_Id) return Entity_Id is
Comp : Entity_Id;
Ctyp : Entity_Id;
begin
Ctyp := Typ;
pragma Assert (Is_Tagged_Type (Ctyp));
if Is_Class_Wide_Type (Ctyp) then
Ctyp := Root_Type (Ctyp);
end if;
if Is_Private_Type (Ctyp) then
Ctyp := Underlying_Type (Ctyp);
-- If the underlying type is missing then the source program has
-- errors and there is nothing else to do (the full-type declaration
-- associated with the private type declaration is missing).
if No (Ctyp) then
return Empty;
end if;
end if;
Comp := First_Entity (Ctyp);
while Present (Comp) loop
if Is_Tag (Comp) then
return Comp;
end if;
Comp := Next_Entity (Comp);
end loop;
-- No tag component found
return Empty;
end First_Tag_Component;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Obsolescent_Warnings.Init;
end Initialize;
---------------------
-- Is_By_Copy_Type --
---------------------
function Is_By_Copy_Type (Ent : Entity_Id) return Boolean is
begin
-- If Id is a private type whose full declaration has not been seen,
-- we assume for now that it is not a By_Copy type. Clearly this
-- attribute should not be used before the type is frozen, but it is
-- needed to build the associated record of a protected type. Another
-- place where some lookahead for a full view is needed ???
return
Is_Elementary_Type (Ent)
or else (Is_Private_Type (Ent)
and then Present (Underlying_Type (Ent))
and then Is_Elementary_Type (Underlying_Type (Ent)));
end Is_By_Copy_Type;
--------------------------
-- Is_By_Reference_Type --
--------------------------
function Is_By_Reference_Type (Ent : Entity_Id) return Boolean is
Btype : constant Entity_Id := Base_Type (Ent);
begin
if Error_Posted (Ent)
or else Error_Posted (Btype)
then
return False;
elsif Is_Private_Type (Btype) then
declare
Utyp : constant Entity_Id := Underlying_Type (Btype);
begin
if No (Utyp) then
return False;
else
return Is_By_Reference_Type (Utyp);
end if;
end;
elsif Is_Incomplete_Type (Btype) then
declare
Ftyp : constant Entity_Id := Full_View (Btype);
begin
if No (Ftyp) then
return False;
else
return Is_By_Reference_Type (Ftyp);
end if;
end;
elsif Is_Concurrent_Type (Btype) then
return True;
elsif Is_Record_Type (Btype) then
if Is_Limited_Record (Btype)
or else Is_Tagged_Type (Btype)
or else Is_Volatile (Btype)
then
return True;
else
declare
C : Entity_Id;
begin
C := First_Component (Btype);
while Present (C) loop
if Is_By_Reference_Type (Etype (C))
or else Is_Volatile (Etype (C))
then
return True;
end if;
C := Next_Component (C);
end loop;
end;
return False;
end if;
elsif Is_Array_Type (Btype) then
return
Is_Volatile (Btype)
or else Is_By_Reference_Type (Component_Type (Btype))
or else Is_Volatile (Component_Type (Btype))
or else Has_Volatile_Components (Btype);
else
return False;
end if;
end Is_By_Reference_Type;
---------------------
-- Is_Derived_Type --
---------------------
function Is_Derived_Type (Ent : E) return B is
Par : Node_Id;
begin
if Is_Type (Ent)
and then Base_Type (Ent) /= Root_Type (Ent)
and then not Is_Class_Wide_Type (Ent)
then
if not Is_Numeric_Type (Root_Type (Ent)) then
return True;
else
Par := Parent (First_Subtype (Ent));
return Present (Par)
and then Nkind (Par) = N_Full_Type_Declaration
and then Nkind (Type_Definition (Par)) =
N_Derived_Type_Definition;
end if;
else
return False;
end if;
end Is_Derived_Type;
---------------------------
-- Is_Indefinite_Subtype --
---------------------------
function Is_Indefinite_Subtype (Ent : Entity_Id) return Boolean is
K : constant Entity_Kind := Ekind (Ent);
begin
if Is_Constrained (Ent) then
return False;
elsif K in Array_Kind
or else K in Class_Wide_Kind
or else Has_Unknown_Discriminants (Ent)
then
return True;
-- Known discriminants: indefinite if there are no default values
elsif K in Record_Kind
or else Is_Incomplete_Or_Private_Type (Ent)
or else Is_Concurrent_Type (Ent)
then
return (Has_Discriminants (Ent)
and then
No (Discriminant_Default_Value (First_Discriminant (Ent))));
else
return False;
end if;
end Is_Indefinite_Subtype;
--------------------------------
-- Is_Inherently_Limited_Type --
--------------------------------
function Is_Inherently_Limited_Type (Ent : Entity_Id) return Boolean is
Btype : constant Entity_Id := Base_Type (Ent);
begin
if Is_Private_Type (Btype) then
declare
Utyp : constant Entity_Id := Underlying_Type (Btype);
begin
if No (Utyp) then
return False;
else
return Is_Inherently_Limited_Type (Utyp);
end if;
end;
elsif Is_Concurrent_Type (Btype) then
return True;
elsif Is_Record_Type (Btype) then
-- Note that we return True for all limited interfaces, even though
-- (unsynchronized) limited interfaces can have descendants that are
-- nonlimited, because this is a predicate on the type itself, and
-- things like functions with limited interface results need to be
-- handled as build in place even though they might return objects
-- of a type that is not inherently limited.
if Is_Limited_Record (Btype) then
return True;
elsif Is_Class_Wide_Type (Btype) then
return Is_Inherently_Limited_Type (Root_Type (Btype));
else
declare
C : Entity_Id;
begin
C := First_Component (Btype);
while Present (C) loop
-- Don't consider components with interface types (which can
-- only occur in the case of a _parent component anyway).
-- They don't have any components, plus it would cause this
-- function to return true for nonlimited types derived from
-- limited intefaces.
if not Is_Interface (Etype (C))
and then Is_Inherently_Limited_Type (Etype (C))
then
return True;
end if;
C := Next_Component (C);
end loop;
end;
return False;
end if;
elsif Is_Array_Type (Btype) then
return Is_Inherently_Limited_Type (Component_Type (Btype));
else
return False;
end if;
end Is_Inherently_Limited_Type;
---------------------
-- Is_Limited_Type --
---------------------
function Is_Limited_Type (Ent : Entity_Id) return Boolean is
Btype : constant E := Base_Type (Ent);
Rtype : constant E := Root_Type (Btype);
begin
if not Is_Type (Ent) then
return False;
elsif Ekind (Btype) = E_Limited_Private_Type
or else Is_Limited_Composite (Btype)
then
return True;
elsif Is_Concurrent_Type (Btype) then
return True;
-- The Is_Limited_Record flag normally indicates that the type is
-- limited. The exception is that a type does not inherit limitedness
-- from its interface ancestor. So the type may be derived from a
-- limited interface, but is not limited.
elsif Is_Limited_Record (Ent)
and then not Is_Interface (Ent)
then
return True;
-- Otherwise we will look around to see if there is some other reason
-- for it to be limited, except that if an error was posted on the
-- entity, then just assume it is non-limited, because it can cause
-- trouble to recurse into a murky erroneous entity!
elsif Error_Posted (Ent) then
return False;
elsif Is_Record_Type (Btype) then
if Is_Limited_Interface (Ent) then
return True;
-- AI-419: limitedness is not inherited from a limited interface
elsif Is_Limited_Record (Rtype) then
return not Is_Interface (Rtype)
or else Is_Protected_Interface (Rtype)
or else Is_Synchronized_Interface (Rtype)
or else Is_Task_Interface (Rtype);
elsif Is_Class_Wide_Type (Btype) then
return Is_Limited_Type (Rtype);
else
declare
C : E;
begin
C := First_Component (Btype);
while Present (C) loop
if Is_Limited_Type (Etype (C)) then
return True;
end if;
C := Next_Component (C);
end loop;
end;
return False;
end if;
elsif Is_Array_Type (Btype) then
return Is_Limited_Type (Component_Type (Btype));
else
return False;
end if;
end Is_Limited_Type;
---------------------------
-- Nearest_Dynamic_Scope --
---------------------------
function Nearest_Dynamic_Scope (Ent : Entity_Id) return Entity_Id is
begin
if Is_Dynamic_Scope (Ent) then
return Ent;
else
return Enclosing_Dynamic_Scope (Ent);
end if;
end Nearest_Dynamic_Scope;
------------------------
-- Next_Tag_Component --
------------------------
function Next_Tag_Component (Tag : Entity_Id) return Entity_Id is
Comp : Entity_Id;
begin
pragma Assert (Is_Tag (Tag));
-- Loop to look for next tag component
Comp := Next_Entity (Tag);
while Present (Comp) loop
if Is_Tag (Comp) then
pragma Assert (Chars (Comp) /= Name_uTag);
return Comp;
end if;
Comp := Next_Entity (Comp);
end loop;
-- No tag component found
return Empty;
end Next_Tag_Component;
--------------------------
-- Number_Discriminants --
--------------------------
function Number_Discriminants (Typ : Entity_Id) return Pos is
N : Int;
Discr : Entity_Id;
begin
N := 0;
Discr := First_Discriminant (Typ);
while Present (Discr) loop
N := N + 1;
Discr := Next_Discriminant (Discr);
end loop;
return N;
end Number_Discriminants;
---------------
-- Tree_Read --
---------------
procedure Tree_Read is
begin
Obsolescent_Warnings.Tree_Read;
end Tree_Read;
----------------
-- Tree_Write --
----------------
procedure Tree_Write is
begin
Obsolescent_Warnings.Tree_Write;
end Tree_Write;
end Sem_Aux;