rt_gccstream/gcc/graphite-clast-to-gimple.c

1652 lines
46 KiB
C
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Translation of CLAST (CLooG AST) to Gimple.
Copyright (C) 2009, 2010 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "toplev.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "domwalk.h"
#include "value-prof.h"
#include "pointer-set.h"
#include "gimple.h"
#include "langhooks.h"
#include "sese.h"
#ifdef HAVE_cloog
#include "cloog/cloog.h"
#include "ppl_c.h"
#include "graphite-ppl.h"
#include "graphite.h"
#include "graphite-poly.h"
#include "graphite-scop-detection.h"
#include "graphite-clast-to-gimple.h"
#include "graphite-dependences.h"
/* This flag is set when an error occurred during the translation of
CLAST to Gimple. */
static bool gloog_error;
/* Verifies properties that GRAPHITE should maintain during translation. */
static inline void
graphite_verify (void)
{
#ifdef ENABLE_CHECKING
verify_loop_structure ();
verify_dominators (CDI_DOMINATORS);
verify_dominators (CDI_POST_DOMINATORS);
verify_loop_closed_ssa (true);
#endif
}
/* Stores the INDEX in a vector for a given clast NAME. */
typedef struct clast_name_index {
int index;
const char *name;
} *clast_name_index_p;
/* Returns a pointer to a new element of type clast_name_index_p built
from NAME and INDEX. */
static inline clast_name_index_p
new_clast_name_index (const char *name, int index)
{
clast_name_index_p res = XNEW (struct clast_name_index);
res->name = name;
res->index = index;
return res;
}
/* For a given clast NAME, returns -1 if it does not correspond to any
parameter, or otherwise, returns the index in the PARAMS or
SCATTERING_DIMENSIONS vector. */
static inline int
clast_name_to_index (const char *name, htab_t index_table)
{
struct clast_name_index tmp;
PTR *slot;
tmp.name = name;
slot = htab_find_slot (index_table, &tmp, NO_INSERT);
if (slot && *slot)
return ((struct clast_name_index *) *slot)->index;
return -1;
}
/* Records in INDEX_TABLE the INDEX for NAME. */
static inline void
save_clast_name_index (htab_t index_table, const char *name, int index)
{
struct clast_name_index tmp;
PTR *slot;
tmp.name = name;
slot = htab_find_slot (index_table, &tmp, INSERT);
if (slot)
{
if (*slot)
free (*slot);
*slot = new_clast_name_index (name, index);
}
}
/* Print to stderr the element ELT. */
static inline void
debug_clast_name_index (clast_name_index_p elt)
{
fprintf (stderr, "(index = %d, name = %s)\n", elt->index, elt->name);
}
/* Helper function for debug_rename_map. */
static inline int
debug_clast_name_indexes_1 (void **slot, void *s ATTRIBUTE_UNUSED)
{
struct clast_name_index *entry = (struct clast_name_index *) *slot;
debug_clast_name_index (entry);
return 1;
}
/* Print to stderr all the elements of MAP. */
void
debug_clast_name_indexes (htab_t map)
{
htab_traverse (map, debug_clast_name_indexes_1, NULL);
}
/* Computes a hash function for database element ELT. */
static inline hashval_t
clast_name_index_elt_info (const void *elt)
{
return htab_hash_pointer (((const struct clast_name_index *) elt)->name);
}
/* Compares database elements E1 and E2. */
static inline int
eq_clast_name_indexes (const void *e1, const void *e2)
{
const struct clast_name_index *elt1 = (const struct clast_name_index *) e1;
const struct clast_name_index *elt2 = (const struct clast_name_index *) e2;
return (elt1->name == elt2->name);
}
/* For a given loop DEPTH in the loop nest of the original black box
PBB, return the old induction variable associated to that loop. */
static inline tree
pbb_to_depth_to_oldiv (poly_bb_p pbb, int depth)
{
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
sese region = SCOP_REGION (PBB_SCOP (pbb));
loop_p loop = gbb_loop_at_index (gbb, region, depth);
return loop->single_iv;
}
/* For a given scattering dimension, return the new induction variable
associated to it. */
static inline tree
newivs_to_depth_to_newiv (VEC (tree, heap) *newivs, int depth)
{
return VEC_index (tree, newivs, depth);
}
/* Returns the tree variable from the name NAME that was given in
Cloog representation. */
static tree
clast_name_to_gcc (const char *name, sese region, VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
int index;
VEC (tree, heap) *params = SESE_PARAMS (region);
if (params && params_index)
{
index = clast_name_to_index (name, params_index);
if (index >= 0)
return VEC_index (tree, params, index);
}
gcc_assert (newivs && newivs_index);
index = clast_name_to_index (name, newivs_index);
gcc_assert (index >= 0);
return newivs_to_depth_to_newiv (newivs, index);
}
/* Returns the signed maximal precision type for expressions TYPE1 and TYPE2. */
static tree
max_signed_precision_type (tree type1, tree type2)
{
int p1 = TYPE_PRECISION (type1);
int p2 = TYPE_PRECISION (type2);
int precision;
tree type;
if (p1 > p2)
precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1;
else
precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2;
type = lang_hooks.types.type_for_size (precision, false);
if (!type)
{
gloog_error = true;
return integer_type_node;
}
return type;
}
/* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
static tree
max_precision_type (tree type1, tree type2)
{
if (POINTER_TYPE_P (type1))
return type1;
if (POINTER_TYPE_P (type2))
return type2;
if (!TYPE_UNSIGNED (type1)
|| !TYPE_UNSIGNED (type2))
return max_signed_precision_type (type1, type2);
return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2;
}
static tree
clast_to_gcc_expression (tree, struct clast_expr *, sese, VEC (tree, heap) *,
htab_t, htab_t);
/* Converts a Cloog reduction expression R with reduction operation OP
to a GCC expression tree of type TYPE. */
static tree
clast_to_gcc_expression_red (tree type, enum tree_code op,
struct clast_reduction *r,
sese region, VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
int i;
tree res = clast_to_gcc_expression (type, r->elts[0], region, newivs,
newivs_index, params_index);
tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type;
for (i = 1; i < r->n; i++)
{
tree t = clast_to_gcc_expression (operand_type, r->elts[i], region,
newivs, newivs_index, params_index);
res = fold_build2 (op, type, res, t);
}
return res;
}
/* Converts a Cloog AST expression E back to a GCC expression tree of
type TYPE. */
static tree
clast_to_gcc_expression (tree type, struct clast_expr *e,
sese region, VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
switch (e->type)
{
case expr_term:
{
struct clast_term *t = (struct clast_term *) e;
if (t->var)
{
if (mpz_cmp_si (t->val, 1) == 0)
{
tree name = clast_name_to_gcc (t->var, region, newivs,
newivs_index, params_index);
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
name = fold_convert (sizetype, name);
name = fold_convert (type, name);
return name;
}
else if (mpz_cmp_si (t->val, -1) == 0)
{
tree name = clast_name_to_gcc (t->var, region, newivs,
newivs_index, params_index);
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
name = fold_convert (sizetype, name);
name = fold_convert (type, name);
return fold_build1 (NEGATE_EXPR, type, name);
}
else
{
tree name = clast_name_to_gcc (t->var, region, newivs,
newivs_index, params_index);
tree cst = gmp_cst_to_tree (type, t->val);
if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type))
name = fold_convert (sizetype, name);
name = fold_convert (type, name);
if (!POINTER_TYPE_P (type))
return fold_build2 (MULT_EXPR, type, cst, name);
gloog_error = true;
return cst;
}
}
else
return gmp_cst_to_tree (type, t->val);
}
case expr_red:
{
struct clast_reduction *r = (struct clast_reduction *) e;
switch (r->type)
{
case clast_red_sum:
return clast_to_gcc_expression_red
(type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
r, region, newivs, newivs_index, params_index);
case clast_red_min:
return clast_to_gcc_expression_red (type, MIN_EXPR, r, region,
newivs, newivs_index,
params_index);
case clast_red_max:
return clast_to_gcc_expression_red (type, MAX_EXPR, r, region,
newivs, newivs_index,
params_index);
default:
gcc_unreachable ();
}
break;
}
case expr_bin:
{
struct clast_binary *b = (struct clast_binary *) e;
struct clast_expr *lhs = (struct clast_expr *) b->LHS;
tree tl = clast_to_gcc_expression (type, lhs, region, newivs,
newivs_index, params_index);
tree tr = gmp_cst_to_tree (type, b->RHS);
switch (b->type)
{
case clast_bin_fdiv:
return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr);
case clast_bin_cdiv:
return fold_build2 (CEIL_DIV_EXPR, type, tl, tr);
case clast_bin_div:
return fold_build2 (EXACT_DIV_EXPR, type, tl, tr);
case clast_bin_mod:
return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr);
default:
gcc_unreachable ();
}
}
default:
gcc_unreachable ();
}
return NULL_TREE;
}
/* Return the precision needed to represent the value VAL. */
static int
precision_for_value (mpz_t val)
{
mpz_t x, y, two;
int precision;
value_init (x);
value_init (y);
value_init (two);
value_set_si (x, 2);
value_assign (y, val);
value_set_si (two, 2);
precision = 1;
if (value_neg_p (y))
value_oppose (y, y);
while (value_gt (y, x))
{
value_multiply (x, x, two);
precision++;
}
value_clear (x);
value_clear (y);
value_clear (two);
return precision;
}
/* Return the precision needed to represent the values between LOW and
UP. */
static int
precision_for_interval (mpz_t low, mpz_t up)
{
mpz_t diff;
int precision;
gcc_assert (value_le (low, up));
value_init (diff);
value_subtract (diff, up, low);
precision = precision_for_value (diff);
value_clear (diff);
return precision;
}
/* Return a type that could represent the integer value VAL, or
otherwise return NULL_TREE. */
static tree
gcc_type_for_interval (mpz_t low, mpz_t up, tree old_type)
{
bool unsigned_p = true;
int precision, prec_up, prec_int;
tree type;
gcc_assert (value_le (low, up));
/* Preserve the signedness of the old IV. */
if ((old_type && !TYPE_UNSIGNED (old_type))
|| value_neg_p (low))
unsigned_p = false;
prec_up = precision_for_value (up);
prec_int = precision_for_interval (low, up);
precision = prec_up > prec_int ? prec_up : prec_int;
type = lang_hooks.types.type_for_size (precision, unsigned_p);
if (!type)
{
gloog_error = true;
return integer_type_node;
}
return type;
}
/* Return a type that could represent the integer value VAL, or
otherwise return NULL_TREE. */
static tree
gcc_type_for_value (mpz_t val)
{
return gcc_type_for_interval (val, val, NULL_TREE);
}
/* Return the type for the clast_term T used in STMT. */
static tree
gcc_type_for_clast_term (struct clast_term *t,
sese region, VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
gcc_assert (t->expr.type == expr_term);
if (!t->var)
return gcc_type_for_value (t->val);
return TREE_TYPE (clast_name_to_gcc (t->var, region, newivs,
newivs_index, params_index));
}
static tree
gcc_type_for_clast_expr (struct clast_expr *, sese,
VEC (tree, heap) *, htab_t, htab_t);
/* Return the type for the clast_reduction R used in STMT. */
static tree
gcc_type_for_clast_red (struct clast_reduction *r, sese region,
VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
int i;
tree type = NULL_TREE;
if (r->n == 1)
return gcc_type_for_clast_expr (r->elts[0], region, newivs,
newivs_index, params_index);
switch (r->type)
{
case clast_red_sum:
case clast_red_min:
case clast_red_max:
type = gcc_type_for_clast_expr (r->elts[0], region, newivs,
newivs_index, params_index);
for (i = 1; i < r->n; i++)
type = max_precision_type (type, gcc_type_for_clast_expr
(r->elts[i], region, newivs,
newivs_index, params_index));
return type;
default:
break;
}
gcc_unreachable ();
return NULL_TREE;
}
/* Return the type for the clast_binary B used in STMT. */
static tree
gcc_type_for_clast_bin (struct clast_binary *b,
sese region, VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
tree l = gcc_type_for_clast_expr ((struct clast_expr *) b->LHS, region,
newivs, newivs_index, params_index);
tree r = gcc_type_for_value (b->RHS);
return max_signed_precision_type (l, r);
}
/* Returns the type for the CLAST expression E when used in statement
STMT. */
static tree
gcc_type_for_clast_expr (struct clast_expr *e,
sese region, VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
switch (e->type)
{
case expr_term:
return gcc_type_for_clast_term ((struct clast_term *) e, region,
newivs, newivs_index, params_index);
case expr_red:
return gcc_type_for_clast_red ((struct clast_reduction *) e, region,
newivs, newivs_index, params_index);
case expr_bin:
return gcc_type_for_clast_bin ((struct clast_binary *) e, region,
newivs, newivs_index, params_index);
default:
gcc_unreachable ();
}
return NULL_TREE;
}
/* Returns the type for the equation CLEQ. */
static tree
gcc_type_for_clast_eq (struct clast_equation *cleq,
sese region, VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
tree l = gcc_type_for_clast_expr (cleq->LHS, region, newivs,
newivs_index, params_index);
tree r = gcc_type_for_clast_expr (cleq->RHS, region, newivs,
newivs_index, params_index);
return max_precision_type (l, r);
}
/* Translates a clast equation CLEQ to a tree. */
static tree
graphite_translate_clast_equation (sese region,
struct clast_equation *cleq,
VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
enum tree_code comp;
tree type = gcc_type_for_clast_eq (cleq, region, newivs, newivs_index,
params_index);
tree lhs = clast_to_gcc_expression (type, cleq->LHS, region, newivs,
newivs_index, params_index);
tree rhs = clast_to_gcc_expression (type, cleq->RHS, region, newivs,
newivs_index, params_index);
if (cleq->sign == 0)
comp = EQ_EXPR;
else if (cleq->sign > 0)
comp = GE_EXPR;
else
comp = LE_EXPR;
return fold_build2 (comp, boolean_type_node, lhs, rhs);
}
/* Creates the test for the condition in STMT. */
static tree
graphite_create_guard_cond_expr (sese region, struct clast_guard *stmt,
VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
tree cond = NULL;
int i;
for (i = 0; i < stmt->n; i++)
{
tree eq = graphite_translate_clast_equation (region, &stmt->eq[i],
newivs, newivs_index,
params_index);
if (cond)
cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq);
else
cond = eq;
}
return cond;
}
/* Creates a new if region corresponding to Cloog's guard. */
static edge
graphite_create_new_guard (sese region, edge entry_edge,
struct clast_guard *stmt,
VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
tree cond_expr = graphite_create_guard_cond_expr (region, stmt, newivs,
newivs_index, params_index);
edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
return exit_edge;
}
/* Compute the lower bound LOW and upper bound UP for the induction
variable at LEVEL for the statement PBB, based on the transformed
scattering of PBB: T|I|G|Cst, with T the scattering transform, I
the iteration domain, and G the context parameters. */
static void
compute_bounds_for_level (poly_bb_p pbb, int level, mpz_t low, mpz_t up)
{
ppl_Pointset_Powerset_C_Polyhedron_t ps;
ppl_Linear_Expression_t le;
combine_context_id_scat (&ps, pbb, false);
/* Prepare the linear expression corresponding to the level that we
want to maximize/minimize. */
{
ppl_dimension_type dim = pbb_nb_scattering_transform (pbb)
+ pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
ppl_new_Linear_Expression_with_dimension (&le, dim);
ppl_set_coef (le, 2 * level + 1, 1);
}
ppl_max_for_le_pointset (ps, le, up);
ppl_min_for_le_pointset (ps, le, low);
}
/* Compute the type for the induction variable at LEVEL for the
statement PBB, based on the transformed schedule of PBB. OLD_TYPE
is the type of the old induction variable for that loop. */
static tree
compute_type_for_level_1 (poly_bb_p pbb, int level, tree old_type)
{
mpz_t low, up;
tree type;
value_init (low);
value_init (up);
compute_bounds_for_level (pbb, level, low, up);
type = gcc_type_for_interval (low, up, old_type);
value_clear (low);
value_clear (up);
return type;
}
/* Compute the type for the induction variable at LEVEL for the
statement PBB, based on the transformed schedule of PBB. */
static tree
compute_type_for_level (poly_bb_p pbb, int level)
{
tree oldiv = pbb_to_depth_to_oldiv (pbb, level);
tree type = TREE_TYPE (oldiv);
if (type && POINTER_TYPE_P (type))
{
#ifdef ENABLE_CHECKING
tree ctype = compute_type_for_level_1 (pbb, level, type);
/* In the case of a pointer type, check that after the loop
transform, the lower and the upper bounds of the type fit the
oldiv pointer type. */
gcc_assert (TYPE_PRECISION (type) >= TYPE_PRECISION (ctype)
&& integer_zerop (lower_bound_in_type (ctype, ctype)));
#endif
return type;
}
return compute_type_for_level_1 (pbb, level, type);
}
/* Walks a CLAST and returns the first statement in the body of a
loop. */
static struct clast_user_stmt *
clast_get_body_of_loop (struct clast_stmt *stmt)
{
if (!stmt
|| CLAST_STMT_IS_A (stmt, stmt_user))
return (struct clast_user_stmt *) stmt;
if (CLAST_STMT_IS_A (stmt, stmt_for))
return clast_get_body_of_loop (((struct clast_for *) stmt)->body);
if (CLAST_STMT_IS_A (stmt, stmt_guard))
return clast_get_body_of_loop (((struct clast_guard *) stmt)->then);
if (CLAST_STMT_IS_A (stmt, stmt_block))
return clast_get_body_of_loop (((struct clast_block *) stmt)->body);
gcc_unreachable ();
}
/* Returns the type for the induction variable for the loop translated
from STMT_FOR. */
static tree
gcc_type_for_iv_of_clast_loop (struct clast_for *stmt_for, int level,
tree lb_type, tree ub_type)
{
struct clast_stmt *stmt = (struct clast_stmt *) stmt_for;
struct clast_user_stmt *body = clast_get_body_of_loop (stmt);
CloogStatement *cs = body->statement;
poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
return max_signed_precision_type (lb_type, max_precision_type
(ub_type, compute_type_for_level
(pbb, level - 1)));
}
/* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
induction variable for the new LOOP. New LOOP is attached to CFG
starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
CLooG's scattering name to the induction variable created for the
loop of STMT. The new induction variable is inserted in the NEWIVS
vector. */
static struct loop *
graphite_create_new_loop (sese region, edge entry_edge,
struct clast_for *stmt,
loop_p outer, VEC (tree, heap) **newivs,
htab_t newivs_index, htab_t params_index, int level)
{
tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, *newivs,
newivs_index, params_index);
tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, *newivs,
newivs_index, params_index);
tree type = gcc_type_for_iv_of_clast_loop (stmt, level, lb_type, ub_type);
tree lb = clast_to_gcc_expression (type, stmt->LB, region, *newivs,
newivs_index, params_index);
tree ub = clast_to_gcc_expression (type, stmt->UB, region, *newivs,
newivs_index, params_index);
tree stride = gmp_cst_to_tree (type, stmt->stride);
tree ivvar = create_tmp_var (type, "graphite_IV");
tree iv, iv_after_increment;
loop_p loop = create_empty_loop_on_edge
(entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
outer ? outer : entry_edge->src->loop_father);
add_referenced_var (ivvar);
save_clast_name_index (newivs_index, stmt->iterator,
VEC_length (tree, *newivs));
VEC_safe_push (tree, heap, *newivs, iv);
return loop;
}
/* Inserts in MAP a tuple (OLD_NAME, NEW_NAME) for the induction
variables of the loops around GBB in SESE. */
static void
build_iv_mapping (htab_t map, sese region,
VEC (tree, heap) *newivs, htab_t newivs_index,
struct clast_user_stmt *user_stmt,
htab_t params_index)
{
struct clast_stmt *t;
int index = 0;
CloogStatement *cs = user_stmt->statement;
poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (cs);
for (t = user_stmt->substitutions; t; t = t->next, index++)
{
struct clast_expr *expr = (struct clast_expr *)
((struct clast_assignment *)t)->RHS;
tree type = gcc_type_for_clast_expr (expr, region, newivs,
newivs_index, params_index);
tree old_name = pbb_to_depth_to_oldiv (pbb, index);
tree e = clast_to_gcc_expression (type, expr, region, newivs,
newivs_index, params_index);
set_rename (map, old_name, e);
}
}
/* Helper function for htab_traverse. */
static int
copy_renames (void **slot, void *s)
{
struct rename_map_elt_s *entry = (struct rename_map_elt_s *) *slot;
htab_t res = (htab_t) s;
tree old_name = entry->old_name;
tree expr = entry->expr;
struct rename_map_elt_s tmp;
PTR *x;
tmp.old_name = old_name;
x = htab_find_slot (res, &tmp, INSERT);
if (x && !*x)
*x = new_rename_map_elt (old_name, expr);
return 1;
}
/* Construct bb_pbb_def with BB and PBB. */
static bb_pbb_def *
new_bb_pbb_def (basic_block bb, poly_bb_p pbb)
{
bb_pbb_def *bb_pbb_p;
bb_pbb_p = XNEW (bb_pbb_def);
bb_pbb_p->bb = bb;
bb_pbb_p->pbb = pbb;
return bb_pbb_p;
}
/* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
static void
mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping)
{
bb_pbb_def tmp;
PTR *x;
tmp.bb = bb;
x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT);
if (x && !*x)
*x = new_bb_pbb_def (bb, pbb);
}
/* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
static poly_bb_p
find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb)
{
bb_pbb_def tmp;
PTR *slot;
tmp.bb = bb;
slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT);
if (slot && *slot)
return ((bb_pbb_def *) *slot)->pbb;
return NULL;
}
/* Check data dependency in LOOP at scattering level LEVEL.
BB_PBB_MAPPING is a basic_block and it's related poly_bb_p
mapping. */
static bool
dependency_in_loop_p (loop_p loop, htab_t bb_pbb_mapping, int level)
{
unsigned i,j;
basic_block *bbs = get_loop_body_in_dom_order (loop);
for (i = 0; i < loop->num_nodes; i++)
{
poly_bb_p pbb1 = find_pbb_via_hash (bb_pbb_mapping, bbs[i]);
if (pbb1 == NULL)
continue;
for (j = 0; j < loop->num_nodes; j++)
{
poly_bb_p pbb2 = find_pbb_via_hash (bb_pbb_mapping, bbs[j]);
if (pbb2 == NULL)
continue;
if (dependency_between_pbbs_p (pbb1, pbb2, level))
{
free (bbs);
return true;
}
}
}
free (bbs);
return false;
}
static edge
translate_clast (sese, loop_p, struct clast_stmt *, edge, htab_t,
VEC (tree, heap) **, htab_t, htab_t, int, htab_t);
/* Translates a clast user statement STMT to gimple.
- REGION is the sese region we used to generate the scop.
- NEXT_E is the edge where new generated code should be attached.
- CONTEXT_LOOP is the loop in which the generated code will be placed
- RENAME_MAP contains a set of tuples of new names associated to
the original variables names.
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
- PARAMS_INDEX connects the cloog parameters with the gimple parameters in
the sese region. */
static edge
translate_clast_user (sese region, struct clast_user_stmt *stmt, edge next_e,
htab_t rename_map, VEC (tree, heap) **newivs,
htab_t newivs_index, htab_t bb_pbb_mapping,
htab_t params_index)
{
gimple_bb_p gbb;
basic_block new_bb;
poly_bb_p pbb = (poly_bb_p) cloog_statement_usr (stmt->statement);
gbb = PBB_BLACK_BOX (pbb);
if (GBB_BB (gbb) == ENTRY_BLOCK_PTR)
return next_e;
build_iv_mapping (rename_map, region, *newivs, newivs_index, stmt,
params_index);
next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), region,
next_e, rename_map);
new_bb = next_e->src;
mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping);
update_ssa (TODO_update_ssa);
return next_e;
}
/* Creates a new if region protecting the loop to be executed, if the execution
count is zero (lb > ub). */
static edge
graphite_create_new_loop_guard (sese region, edge entry_edge,
struct clast_for *stmt,
VEC (tree, heap) *newivs,
htab_t newivs_index, htab_t params_index)
{
tree cond_expr;
edge exit_edge;
tree lb_type = gcc_type_for_clast_expr (stmt->LB, region, newivs,
newivs_index, params_index);
tree ub_type = gcc_type_for_clast_expr (stmt->UB, region, newivs,
newivs_index, params_index);
tree type = max_precision_type (lb_type, ub_type);
tree lb = clast_to_gcc_expression (type, stmt->LB, region, newivs,
newivs_index, params_index);
tree ub = clast_to_gcc_expression (type, stmt->UB, region, newivs,
newivs_index, params_index);
tree ub_one;
/* Adding +1 and using LT_EXPR helps with loop latches that have a
loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
2^{32|64}, and the condition lb <= ub is true, even if we do not want this.
However lb < ub + 1 is false, as expected. */
tree one;
mpz_t gmp_one;
mpz_init (gmp_one);
mpz_set_si (gmp_one, 1);
one = gmp_cst_to_tree (type, gmp_one);
mpz_clear (gmp_one);
ub_one = fold_build2 (POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR,
type, ub, one);
/* When ub + 1 wraps around, use lb <= ub. */
if (integer_zerop (ub_one))
cond_expr = fold_build2 (LE_EXPR, boolean_type_node, lb, ub);
else
cond_expr = fold_build2 (LT_EXPR, boolean_type_node, lb, ub_one);
exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
return exit_edge;
}
/* Create the loop for a clast for statement.
- REGION is the sese region we used to generate the scop.
- NEXT_E is the edge where new generated code should be attached.
- RENAME_MAP contains a set of tuples of new names associated to
the original variables names.
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
- PARAMS_INDEX connects the cloog parameters with the gimple parameters in
the sese region. */
static edge
translate_clast_for_loop (sese region, loop_p context_loop,
struct clast_for *stmt, edge next_e,
htab_t rename_map, VEC (tree, heap) **newivs,
htab_t newivs_index, htab_t bb_pbb_mapping,
int level, htab_t params_index)
{
struct loop *loop = graphite_create_new_loop (region, next_e, stmt,
context_loop, newivs,
newivs_index, params_index,
level);
edge last_e = single_exit (loop);
edge to_body = single_succ_edge (loop->header);
basic_block after = to_body->dest;
/* Create a basic block for loop close phi nodes. */
last_e = single_succ_edge (split_edge (last_e));
/* Translate the body of the loop. */
next_e = translate_clast (region, loop, stmt->body, to_body, rename_map,
newivs, newivs_index, bb_pbb_mapping, level + 1,
params_index);
redirect_edge_succ_nodup (next_e, after);
set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
/* Remove from rename_map all the tuples containing variables
defined in loop's body. */
insert_loop_close_phis (rename_map, loop);
if (flag_loop_parallelize_all
&& !dependency_in_loop_p (loop, bb_pbb_mapping,
get_scattering_level (level)))
loop->can_be_parallel = true;
return last_e;
}
/* Translates a clast for statement STMT to gimple. First a guard is created
protecting the loop, if it is executed zero times. In this guard we create
the real loop structure.
- REGION is the sese region we used to generate the scop.
- NEXT_E is the edge where new generated code should be attached.
- RENAME_MAP contains a set of tuples of new names associated to
the original variables names.
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
- PARAMS_INDEX connects the cloog parameters with the gimple parameters in
the sese region. */
static edge
translate_clast_for (sese region, loop_p context_loop, struct clast_for *stmt,
edge next_e, htab_t rename_map, VEC (tree, heap) **newivs,
htab_t newivs_index, htab_t bb_pbb_mapping, int level,
htab_t params_index)
{
edge last_e = graphite_create_new_loop_guard (region, next_e, stmt, *newivs,
newivs_index, params_index);
edge true_e = get_true_edge_from_guard_bb (next_e->dest);
edge false_e = get_false_edge_from_guard_bb (next_e->dest);
edge exit_true_e = single_succ_edge (true_e->dest);
edge exit_false_e = single_succ_edge (false_e->dest);
htab_t before_guard = htab_create (10, rename_map_elt_info,
eq_rename_map_elts, free);
htab_traverse (rename_map, copy_renames, before_guard);
next_e = translate_clast_for_loop (region, context_loop, stmt, true_e,
rename_map, newivs,
newivs_index, bb_pbb_mapping, level,
params_index);
insert_guard_phis (last_e->src, exit_true_e, exit_false_e,
before_guard, rename_map);
htab_delete (before_guard);
return last_e;
}
/* Translates a clast guard statement STMT to gimple.
- REGION is the sese region we used to generate the scop.
- NEXT_E is the edge where new generated code should be attached.
- CONTEXT_LOOP is the loop in which the generated code will be placed
- RENAME_MAP contains a set of tuples of new names associated to
the original variables names.
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
- PARAMS_INDEX connects the cloog parameters with the gimple parameters in
the sese region. */
static edge
translate_clast_guard (sese region, loop_p context_loop,
struct clast_guard *stmt, edge next_e,
htab_t rename_map, VEC (tree, heap) **newivs,
htab_t newivs_index, htab_t bb_pbb_mapping, int level,
htab_t params_index)
{
edge last_e = graphite_create_new_guard (region, next_e, stmt, *newivs,
newivs_index, params_index);
edge true_e = get_true_edge_from_guard_bb (next_e->dest);
edge false_e = get_false_edge_from_guard_bb (next_e->dest);
edge exit_true_e = single_succ_edge (true_e->dest);
edge exit_false_e = single_succ_edge (false_e->dest);
htab_t before_guard = htab_create (10, rename_map_elt_info,
eq_rename_map_elts, free);
htab_traverse (rename_map, copy_renames, before_guard);
next_e = translate_clast (region, context_loop, stmt->then, true_e,
rename_map, newivs, newivs_index, bb_pbb_mapping,
level, params_index);
insert_guard_phis (last_e->src, exit_true_e, exit_false_e,
before_guard, rename_map);
htab_delete (before_guard);
return last_e;
}
/* Translates a CLAST statement STMT to GCC representation in the
context of a SESE.
- NEXT_E is the edge where new generated code should be attached.
- CONTEXT_LOOP is the loop in which the generated code will be placed
- RENAME_MAP contains a set of tuples of new names associated to
the original variables names.
- BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
static edge
translate_clast (sese region, loop_p context_loop, struct clast_stmt *stmt,
edge next_e, htab_t rename_map, VEC (tree, heap) **newivs,
htab_t newivs_index, htab_t bb_pbb_mapping, int level,
htab_t params_index)
{
if (!stmt)
return next_e;
if (CLAST_STMT_IS_A (stmt, stmt_root))
; /* Do nothing. */
else if (CLAST_STMT_IS_A (stmt, stmt_user))
next_e = translate_clast_user (region, (struct clast_user_stmt *) stmt,
next_e, rename_map, newivs, newivs_index,
bb_pbb_mapping, params_index);
else if (CLAST_STMT_IS_A (stmt, stmt_for))
next_e = translate_clast_for (region, context_loop,
(struct clast_for *) stmt, next_e,
rename_map, newivs, newivs_index,
bb_pbb_mapping, level, params_index);
else if (CLAST_STMT_IS_A (stmt, stmt_guard))
next_e = translate_clast_guard (region, context_loop,
(struct clast_guard *) stmt, next_e,
rename_map, newivs, newivs_index,
bb_pbb_mapping, level, params_index);
else if (CLAST_STMT_IS_A (stmt, stmt_block))
next_e = translate_clast (region, context_loop,
((struct clast_block *) stmt)->body,
next_e, rename_map, newivs, newivs_index,
bb_pbb_mapping, level, params_index);
else
gcc_unreachable();
recompute_all_dominators ();
graphite_verify ();
return translate_clast (region, context_loop, stmt->next, next_e,
rename_map, newivs, newivs_index,
bb_pbb_mapping, level, params_index);
}
/* Free the SCATTERING domain list. */
static void
free_scattering (CloogDomainList *scattering)
{
while (scattering)
{
CloogDomain *dom = cloog_domain (scattering);
CloogDomainList *next = cloog_next_domain (scattering);
cloog_domain_free (dom);
free (scattering);
scattering = next;
}
}
/* Initialize Cloog's parameter names from the names used in GIMPLE.
Initialize Cloog's iterator names, using 'graphite_iterator_%d'
from 0 to scop_nb_loops (scop). */
static void
initialize_cloog_names (scop_p scop, CloogProgram *prog)
{
sese region = SCOP_REGION (scop);
int i;
int nb_iterators = scop_max_loop_depth (scop);
int nb_scattering = cloog_program_nb_scattdims (prog);
int nb_parameters = VEC_length (tree, SESE_PARAMS (region));
char **iterators = XNEWVEC (char *, nb_iterators * 2);
char **scattering = XNEWVEC (char *, nb_scattering);
char **parameters= XNEWVEC (char *, nb_parameters);
cloog_program_set_names (prog, cloog_names_malloc ());
for (i = 0; i < nb_parameters; i++)
{
tree param = VEC_index (tree, SESE_PARAMS(region), i);
const char *name = get_name (param);
int len;
if (!name)
name = "T";
len = strlen (name);
len += 17;
parameters[i] = XNEWVEC (char, len + 1);
snprintf (parameters[i], len, "%s_%d", name, SSA_NAME_VERSION (param));
}
cloog_names_set_nb_parameters (cloog_program_names (prog), nb_parameters);
cloog_names_set_parameters (cloog_program_names (prog), parameters);
for (i = 0; i < nb_iterators; i++)
{
int len = 4 + 16;
iterators[i] = XNEWVEC (char, len);
snprintf (iterators[i], len, "git_%d", i);
}
cloog_names_set_nb_iterators (cloog_program_names (prog),
nb_iterators);
cloog_names_set_iterators (cloog_program_names (prog),
iterators);
for (i = 0; i < nb_scattering; i++)
{
int len = 5 + 16;
scattering[i] = XNEWVEC (char, len);
snprintf (scattering[i], len, "scat_%d", i);
}
cloog_names_set_nb_scattering (cloog_program_names (prog),
nb_scattering);
cloog_names_set_scattering (cloog_program_names (prog),
scattering);
}
/* Build cloog program for SCoP. */
static void
build_cloog_prog (scop_p scop, CloogProgram *prog)
{
int i;
int max_nb_loops = scop_max_loop_depth (scop);
poly_bb_p pbb;
CloogLoop *loop_list = NULL;
CloogBlockList *block_list = NULL;
CloogDomainList *scattering = NULL;
int nbs = 2 * max_nb_loops + 1;
int *scaldims;
cloog_program_set_context
(prog, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop)));
nbs = unify_scattering_dimensions (scop);
scaldims = (int *) xmalloc (nbs * (sizeof (int)));
cloog_program_set_nb_scattdims (prog, nbs);
initialize_cloog_names (scop, prog);
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
{
CloogStatement *stmt;
CloogBlock *block;
/* Dead code elimination: when the domain of a PBB is empty,
don't generate code for the PBB. */
if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb)))
continue;
/* Build the new statement and its block. */
stmt = cloog_statement_alloc (pbb_index (pbb));
block = cloog_block_alloc (stmt, 0, NULL, pbb_dim_iter_domain (pbb));
cloog_statement_set_usr (stmt, pbb);
/* Build loop list. */
{
CloogLoop *new_loop_list = cloog_loop_malloc ();
cloog_loop_set_next (new_loop_list, loop_list);
cloog_loop_set_domain
(new_loop_list,
new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb)));
cloog_loop_set_block (new_loop_list, block);
loop_list = new_loop_list;
}
/* Build block list. */
{
CloogBlockList *new_block_list = cloog_block_list_malloc ();
cloog_block_list_set_next (new_block_list, block_list);
cloog_block_list_set_block (new_block_list, block);
block_list = new_block_list;
}
/* Build scattering list. */
{
/* XXX: Replace with cloog_domain_list_alloc(), when available. */
CloogDomainList *new_scattering
= (CloogDomainList *) xmalloc (sizeof (CloogDomainList));
ppl_Polyhedron_t scat;
CloogDomain *dom;
scat = PBB_TRANSFORMED_SCATTERING (pbb);
dom = new_Cloog_Domain_from_ppl_Polyhedron (scat);
cloog_set_next_domain (new_scattering, scattering);
cloog_set_domain (new_scattering, dom);
scattering = new_scattering;
}
}
cloog_program_set_loop (prog, loop_list);
cloog_program_set_blocklist (prog, block_list);
for (i = 0; i < nbs; i++)
scaldims[i] = 0 ;
cloog_program_set_scaldims (prog, scaldims);
/* Extract scalar dimensions to simplify the code generation problem. */
cloog_program_extract_scalars (prog, scattering);
/* Apply scattering. */
cloog_program_scatter (prog, scattering);
free_scattering (scattering);
/* Iterators corresponding to scalar dimensions have to be extracted. */
cloog_names_scalarize (cloog_program_names (prog), nbs,
cloog_program_scaldims (prog));
/* Free blocklist. */
{
CloogBlockList *next = cloog_program_blocklist (prog);
while (next)
{
CloogBlockList *toDelete = next;
next = cloog_block_list_next (next);
cloog_block_list_set_next (toDelete, NULL);
cloog_block_list_set_block (toDelete, NULL);
cloog_block_list_free (toDelete);
}
cloog_program_set_blocklist (prog, NULL);
}
}
/* Return the options that will be used in GLOOG. */
static CloogOptions *
set_cloog_options (void)
{
CloogOptions *options = cloog_options_malloc ();
/* Change cloog output language to C. If we do use FORTRAN instead, cloog
will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
we pass an incomplete program to cloog. */
options->language = LANGUAGE_C;
/* Enable complex equality spreading: removes dummy statements
(assignments) in the generated code which repeats the
substitution equations for statements. This is useless for
GLooG. */
options->esp = 1;
/* Enable C pretty-printing mode: normalizes the substitution
equations for statements. */
options->cpp = 1;
/* Allow cloog to build strides with a stride width different to one.
This example has stride = 4:
for (i = 0; i < 20; i += 4)
A */
options->strides = 1;
/* Disable optimizations and make cloog generate source code closer to the
input. This is useful for debugging, but later we want the optimized
code.
XXX: We can not disable optimizations, as loop blocking is not working
without them. */
if (0)
{
options->f = -1;
options->l = INT_MAX;
}
return options;
}
/* Prints STMT to STDERR. */
void
print_clast_stmt (FILE *file, struct clast_stmt *stmt)
{
CloogOptions *options = set_cloog_options ();
pprint (file, stmt, 0, options);
cloog_options_free (options);
}
/* Prints STMT to STDERR. */
void
debug_clast_stmt (struct clast_stmt *stmt)
{
print_clast_stmt (stderr, stmt);
}
/* Translate SCOP to a CLooG program and clast. These two
representations should be freed together: a clast cannot be used
without a program. */
cloog_prog_clast
scop_to_clast (scop_p scop)
{
CloogOptions *options = set_cloog_options ();
cloog_prog_clast pc;
/* Connect new cloog prog generation to graphite. */
pc.prog = cloog_program_malloc ();
build_cloog_prog (scop, pc.prog);
pc.prog = cloog_program_generate (pc.prog, options);
pc.stmt = cloog_clast_create (pc.prog, options);
cloog_options_free (options);
return pc;
}
/* Prints to FILE the code generated by CLooG for SCOP. */
void
print_generated_program (FILE *file, scop_p scop)
{
CloogOptions *options = set_cloog_options ();
cloog_prog_clast pc = scop_to_clast (scop);
fprintf (file, " (prog: \n");
cloog_program_print (file, pc.prog);
fprintf (file, " )\n");
fprintf (file, " (clast: \n");
pprint (file, pc.stmt, 0, options);
fprintf (file, " )\n");
cloog_options_free (options);
cloog_clast_free (pc.stmt);
cloog_program_free (pc.prog);
}
/* Prints to STDERR the code generated by CLooG for SCOP. */
void
debug_generated_program (scop_p scop)
{
print_generated_program (stderr, scop);
}
/* Add CLooG names to parameter index. The index is used to translate
back from CLooG names to GCC trees. */
static void
create_params_index (htab_t index_table, CloogProgram *prog) {
CloogNames* names = cloog_program_names (prog);
int nb_parameters = cloog_names_nb_parameters (names);
char **parameters = cloog_names_parameters (names);
int i;
for (i = 0; i < nb_parameters; i++)
save_clast_name_index (index_table, parameters[i], i);
}
/* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
the given SCOP. Return true if code generation succeeded.
BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
*/
bool
gloog (scop_p scop, VEC (scop_p, heap) *scops, htab_t bb_pbb_mapping)
{
VEC (tree, heap) *newivs = VEC_alloc (tree, heap, 10);
loop_p context_loop;
sese region = SCOP_REGION (scop);
ifsese if_region = NULL;
htab_t rename_map, newivs_index, params_index;
cloog_prog_clast pc;
int i;
timevar_push (TV_GRAPHITE_CODE_GEN);
gloog_error = false;
pc = scop_to_clast (scop);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nCLAST generated by CLooG: \n");
print_clast_stmt (dump_file, pc.stmt);
fprintf (dump_file, "\n");
}
recompute_all_dominators ();
graphite_verify ();
if_region = move_sese_in_condition (region);
sese_insert_phis_for_liveouts (region,
if_region->region->exit->src,
if_region->false_region->exit,
if_region->true_region->exit);
recompute_all_dominators ();
graphite_verify ();
context_loop = SESE_ENTRY (region)->src->loop_father;
rename_map = htab_create (10, rename_map_elt_info, eq_rename_map_elts, free);
newivs_index = htab_create (10, clast_name_index_elt_info,
eq_clast_name_indexes, free);
params_index = htab_create (10, clast_name_index_elt_info,
eq_clast_name_indexes, free);
create_params_index (params_index, pc.prog);
translate_clast (region, context_loop, pc.stmt,
if_region->true_region->entry,
rename_map, &newivs, newivs_index,
bb_pbb_mapping, 1, params_index);
graphite_verify ();
sese_adjust_liveout_phis (region, rename_map,
if_region->region->exit->src,
if_region->false_region->exit,
if_region->true_region->exit);
scev_reset_htab ();
rename_nb_iterations (rename_map);
for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
rename_sese_parameters (rename_map, SCOP_REGION (scop));
recompute_all_dominators ();
graphite_verify ();
if (gloog_error)
set_ifsese_condition (if_region, integer_zero_node);
free (if_region->true_region);
free (if_region->region);
free (if_region);
htab_delete (rename_map);
htab_delete (newivs_index);
htab_delete (params_index);
VEC_free (tree, heap, newivs);
cloog_clast_free (pc.stmt);
cloog_program_free (pc.prog);
timevar_pop (TV_GRAPHITE_CODE_GEN);
if (dump_file && (dump_flags & TDF_DETAILS))
{
loop_p loop;
loop_iterator li;
int num_no_dependency = 0;
FOR_EACH_LOOP (li, loop, 0)
if (loop->can_be_parallel)
num_no_dependency++;
fprintf (dump_file, "\n%d loops carried no dependency.\n",
num_no_dependency);
}
return !gloog_error;
}
#endif