rt_gccstream/gcc/fortran/interface.c

3249 lines
84 KiB
C

/* Deal with interfaces.
Copyright (C) 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2009,
2010
Free Software Foundation, Inc.
Contributed by Andy Vaught
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Deal with interfaces. An explicit interface is represented as a
singly linked list of formal argument structures attached to the
relevant symbols. For an implicit interface, the arguments don't
point to symbols. Explicit interfaces point to namespaces that
contain the symbols within that interface.
Implicit interfaces are linked together in a singly linked list
along the next_if member of symbol nodes. Since a particular
symbol can only have a single explicit interface, the symbol cannot
be part of multiple lists and a single next-member suffices.
This is not the case for general classes, though. An operator
definition is independent of just about all other uses and has it's
own head pointer.
Nameless interfaces:
Nameless interfaces create symbols with explicit interfaces within
the current namespace. They are otherwise unlinked.
Generic interfaces:
The generic name points to a linked list of symbols. Each symbol
has an explicit interface. Each explicit interface has its own
namespace containing the arguments. Module procedures are symbols in
which the interface is added later when the module procedure is parsed.
User operators:
User-defined operators are stored in a their own set of symtrees
separate from regular symbols. The symtrees point to gfc_user_op
structures which in turn head up a list of relevant interfaces.
Extended intrinsics and assignment:
The head of these interface lists are stored in the containing namespace.
Implicit interfaces:
An implicit interface is represented as a singly linked list of
formal argument list structures that don't point to any symbol
nodes -- they just contain types.
When a subprogram is defined, the program unit's name points to an
interface as usual, but the link to the namespace is NULL and the
formal argument list points to symbols within the same namespace as
the program unit name. */
#include "config.h"
#include "system.h"
#include "gfortran.h"
#include "match.h"
/* The current_interface structure holds information about the
interface currently being parsed. This structure is saved and
restored during recursive interfaces. */
gfc_interface_info current_interface;
/* Free a singly linked list of gfc_interface structures. */
void
gfc_free_interface (gfc_interface *intr)
{
gfc_interface *next;
for (; intr; intr = next)
{
next = intr->next;
gfc_free (intr);
}
}
/* Change the operators unary plus and minus into binary plus and
minus respectively, leaving the rest unchanged. */
static gfc_intrinsic_op
fold_unary_intrinsic (gfc_intrinsic_op op)
{
switch (op)
{
case INTRINSIC_UPLUS:
op = INTRINSIC_PLUS;
break;
case INTRINSIC_UMINUS:
op = INTRINSIC_MINUS;
break;
default:
break;
}
return op;
}
/* Match a generic specification. Depending on which type of
interface is found, the 'name' or 'op' pointers may be set.
This subroutine doesn't return MATCH_NO. */
match
gfc_match_generic_spec (interface_type *type,
char *name,
gfc_intrinsic_op *op)
{
char buffer[GFC_MAX_SYMBOL_LEN + 1];
match m;
gfc_intrinsic_op i;
if (gfc_match (" assignment ( = )") == MATCH_YES)
{
*type = INTERFACE_INTRINSIC_OP;
*op = INTRINSIC_ASSIGN;
return MATCH_YES;
}
if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
{ /* Operator i/f */
*type = INTERFACE_INTRINSIC_OP;
*op = fold_unary_intrinsic (i);
return MATCH_YES;
}
*op = INTRINSIC_NONE;
if (gfc_match (" operator ( ") == MATCH_YES)
{
m = gfc_match_defined_op_name (buffer, 1);
if (m == MATCH_NO)
goto syntax;
if (m != MATCH_YES)
return MATCH_ERROR;
m = gfc_match_char (')');
if (m == MATCH_NO)
goto syntax;
if (m != MATCH_YES)
return MATCH_ERROR;
strcpy (name, buffer);
*type = INTERFACE_USER_OP;
return MATCH_YES;
}
if (gfc_match_name (buffer) == MATCH_YES)
{
strcpy (name, buffer);
*type = INTERFACE_GENERIC;
return MATCH_YES;
}
*type = INTERFACE_NAMELESS;
return MATCH_YES;
syntax:
gfc_error ("Syntax error in generic specification at %C");
return MATCH_ERROR;
}
/* Match one of the five F95 forms of an interface statement. The
matcher for the abstract interface follows. */
match
gfc_match_interface (void)
{
char name[GFC_MAX_SYMBOL_LEN + 1];
interface_type type;
gfc_symbol *sym;
gfc_intrinsic_op op;
match m;
m = gfc_match_space ();
if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
return MATCH_ERROR;
/* If we're not looking at the end of the statement now, or if this
is not a nameless interface but we did not see a space, punt. */
if (gfc_match_eos () != MATCH_YES
|| (type != INTERFACE_NAMELESS && m != MATCH_YES))
{
gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
"at %C");
return MATCH_ERROR;
}
current_interface.type = type;
switch (type)
{
case INTERFACE_GENERIC:
if (gfc_get_symbol (name, NULL, &sym))
return MATCH_ERROR;
if (!sym->attr.generic
&& gfc_add_generic (&sym->attr, sym->name, NULL) == FAILURE)
return MATCH_ERROR;
if (sym->attr.dummy)
{
gfc_error ("Dummy procedure '%s' at %C cannot have a "
"generic interface", sym->name);
return MATCH_ERROR;
}
current_interface.sym = gfc_new_block = sym;
break;
case INTERFACE_USER_OP:
current_interface.uop = gfc_get_uop (name);
break;
case INTERFACE_INTRINSIC_OP:
current_interface.op = op;
break;
case INTERFACE_NAMELESS:
case INTERFACE_ABSTRACT:
break;
}
return MATCH_YES;
}
/* Match a F2003 abstract interface. */
match
gfc_match_abstract_interface (void)
{
match m;
if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: ABSTRACT INTERFACE at %C")
== FAILURE)
return MATCH_ERROR;
m = gfc_match_eos ();
if (m != MATCH_YES)
{
gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
return MATCH_ERROR;
}
current_interface.type = INTERFACE_ABSTRACT;
return m;
}
/* Match the different sort of generic-specs that can be present after
the END INTERFACE itself. */
match
gfc_match_end_interface (void)
{
char name[GFC_MAX_SYMBOL_LEN + 1];
interface_type type;
gfc_intrinsic_op op;
match m;
m = gfc_match_space ();
if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
return MATCH_ERROR;
/* If we're not looking at the end of the statement now, or if this
is not a nameless interface but we did not see a space, punt. */
if (gfc_match_eos () != MATCH_YES
|| (type != INTERFACE_NAMELESS && m != MATCH_YES))
{
gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
"statement at %C");
return MATCH_ERROR;
}
m = MATCH_YES;
switch (current_interface.type)
{
case INTERFACE_NAMELESS:
case INTERFACE_ABSTRACT:
if (type != INTERFACE_NAMELESS)
{
gfc_error ("Expected a nameless interface at %C");
m = MATCH_ERROR;
}
break;
case INTERFACE_INTRINSIC_OP:
if (type != current_interface.type || op != current_interface.op)
{
if (current_interface.op == INTRINSIC_ASSIGN)
gfc_error ("Expected 'END INTERFACE ASSIGNMENT (=)' at %C");
else
gfc_error ("Expecting 'END INTERFACE OPERATOR (%s)' at %C",
gfc_op2string (current_interface.op));
m = MATCH_ERROR;
}
break;
case INTERFACE_USER_OP:
/* Comparing the symbol node names is OK because only use-associated
symbols can be renamed. */
if (type != current_interface.type
|| strcmp (current_interface.uop->name, name) != 0)
{
gfc_error ("Expecting 'END INTERFACE OPERATOR (.%s.)' at %C",
current_interface.uop->name);
m = MATCH_ERROR;
}
break;
case INTERFACE_GENERIC:
if (type != current_interface.type
|| strcmp (current_interface.sym->name, name) != 0)
{
gfc_error ("Expecting 'END INTERFACE %s' at %C",
current_interface.sym->name);
m = MATCH_ERROR;
}
break;
}
return m;
}
/* Compare two derived types using the criteria in 4.4.2 of the standard,
recursing through gfc_compare_types for the components. */
int
gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
{
gfc_component *dt1, *dt2;
if (derived1 == derived2)
return 1;
/* Special case for comparing derived types across namespaces. If the
true names and module names are the same and the module name is
nonnull, then they are equal. */
if (derived1 != NULL && derived2 != NULL
&& strcmp (derived1->name, derived2->name) == 0
&& derived1->module != NULL && derived2->module != NULL
&& strcmp (derived1->module, derived2->module) == 0)
return 1;
/* Compare type via the rules of the standard. Both types must have
the SEQUENCE attribute to be equal. */
if (strcmp (derived1->name, derived2->name))
return 0;
if (derived1->component_access == ACCESS_PRIVATE
|| derived2->component_access == ACCESS_PRIVATE)
return 0;
if (derived1->attr.sequence == 0 || derived2->attr.sequence == 0)
return 0;
dt1 = derived1->components;
dt2 = derived2->components;
/* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
simple test can speed things up. Otherwise, lots of things have to
match. */
for (;;)
{
if (strcmp (dt1->name, dt2->name) != 0)
return 0;
if (dt1->attr.access != dt2->attr.access)
return 0;
if (dt1->attr.pointer != dt2->attr.pointer)
return 0;
if (dt1->attr.dimension != dt2->attr.dimension)
return 0;
if (dt1->attr.allocatable != dt2->attr.allocatable)
return 0;
if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
return 0;
/* Make sure that link lists do not put this function into an
endless recursive loop! */
if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
&& !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
&& gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
return 0;
else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
&& !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
return 0;
else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
&& (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
return 0;
dt1 = dt1->next;
dt2 = dt2->next;
if (dt1 == NULL && dt2 == NULL)
break;
if (dt1 == NULL || dt2 == NULL)
return 0;
}
return 1;
}
/* Compare two typespecs, recursively if necessary. */
int
gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
{
/* See if one of the typespecs is a BT_VOID, which is what is being used
to allow the funcs like c_f_pointer to accept any pointer type.
TODO: Possibly should narrow this to just the one typespec coming in
that is for the formal arg, but oh well. */
if (ts1->type == BT_VOID || ts2->type == BT_VOID)
return 1;
if (ts1->type != ts2->type
&& ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
|| (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
return 0;
if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
return (ts1->kind == ts2->kind);
/* Compare derived types. */
if (gfc_type_compatible (ts1, ts2))
return 1;
return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived);
}
/* Given two symbols that are formal arguments, compare their ranks
and types. Returns nonzero if they have the same rank and type,
zero otherwise. */
static int
compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
{
int r1, r2;
r1 = (s1->as != NULL) ? s1->as->rank : 0;
r2 = (s2->as != NULL) ? s2->as->rank : 0;
if (r1 != r2)
return 0; /* Ranks differ. */
return gfc_compare_types (&s1->ts, &s2->ts);
}
/* Given two symbols that are formal arguments, compare their types
and rank and their formal interfaces if they are both dummy
procedures. Returns nonzero if the same, zero if different. */
static int
compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
{
if (s1 == NULL || s2 == NULL)
return s1 == s2 ? 1 : 0;
if (s1 == s2)
return 1;
if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
return compare_type_rank (s1, s2);
if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
return 0;
/* At this point, both symbols are procedures. It can happen that
external procedures are compared, where one is identified by usage
to be a function or subroutine but the other is not. Check TKR
nonetheless for these cases. */
if (s1->attr.function == 0 && s1->attr.subroutine == 0)
return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
if (s2->attr.function == 0 && s2->attr.subroutine == 0)
return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
/* Now the type of procedure has been identified. */
if (s1->attr.function != s2->attr.function
|| s1->attr.subroutine != s2->attr.subroutine)
return 0;
if (s1->attr.function && compare_type_rank (s1, s2) == 0)
return 0;
/* Originally, gfortran recursed here to check the interfaces of passed
procedures. This is explicitly not required by the standard. */
return 1;
}
/* Given a formal argument list and a keyword name, search the list
for that keyword. Returns the correct symbol node if found, NULL
if not found. */
static gfc_symbol *
find_keyword_arg (const char *name, gfc_formal_arglist *f)
{
for (; f; f = f->next)
if (strcmp (f->sym->name, name) == 0)
return f->sym;
return NULL;
}
/******** Interface checking subroutines **********/
/* Given an operator interface and the operator, make sure that all
interfaces for that operator are legal. */
bool
gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
locus opwhere)
{
gfc_formal_arglist *formal;
sym_intent i1, i2;
bt t1, t2;
int args, r1, r2, k1, k2;
gcc_assert (sym);
args = 0;
t1 = t2 = BT_UNKNOWN;
i1 = i2 = INTENT_UNKNOWN;
r1 = r2 = -1;
k1 = k2 = -1;
for (formal = sym->formal; formal; formal = formal->next)
{
gfc_symbol *fsym = formal->sym;
if (fsym == NULL)
{
gfc_error ("Alternate return cannot appear in operator "
"interface at %L", &sym->declared_at);
return false;
}
if (args == 0)
{
t1 = fsym->ts.type;
i1 = fsym->attr.intent;
r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
k1 = fsym->ts.kind;
}
if (args == 1)
{
t2 = fsym->ts.type;
i2 = fsym->attr.intent;
r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
k2 = fsym->ts.kind;
}
args++;
}
/* Only +, - and .not. can be unary operators.
.not. cannot be a binary operator. */
if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
&& op != INTRINSIC_MINUS
&& op != INTRINSIC_NOT)
|| (args == 2 && op == INTRINSIC_NOT))
{
gfc_error ("Operator interface at %L has the wrong number of arguments",
&sym->declared_at);
return false;
}
/* Check that intrinsics are mapped to functions, except
INTRINSIC_ASSIGN which should map to a subroutine. */
if (op == INTRINSIC_ASSIGN)
{
if (!sym->attr.subroutine)
{
gfc_error ("Assignment operator interface at %L must be "
"a SUBROUTINE", &sym->declared_at);
return false;
}
if (args != 2)
{
gfc_error ("Assignment operator interface at %L must have "
"two arguments", &sym->declared_at);
return false;
}
/* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
- First argument an array with different rank than second,
- Types and kinds do not conform, and
- First argument is of derived type. */
if (sym->formal->sym->ts.type != BT_DERIVED
&& sym->formal->sym->ts.type != BT_CLASS
&& (r1 == 0 || r1 == r2)
&& (sym->formal->sym->ts.type == sym->formal->next->sym->ts.type
|| (gfc_numeric_ts (&sym->formal->sym->ts)
&& gfc_numeric_ts (&sym->formal->next->sym->ts))))
{
gfc_error ("Assignment operator interface at %L must not redefine "
"an INTRINSIC type assignment", &sym->declared_at);
return false;
}
}
else
{
if (!sym->attr.function)
{
gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
&sym->declared_at);
return false;
}
}
/* Check intents on operator interfaces. */
if (op == INTRINSIC_ASSIGN)
{
if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
{
gfc_error ("First argument of defined assignment at %L must be "
"INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
return false;
}
if (i2 != INTENT_IN)
{
gfc_error ("Second argument of defined assignment at %L must be "
"INTENT(IN)", &sym->declared_at);
return false;
}
}
else
{
if (i1 != INTENT_IN)
{
gfc_error ("First argument of operator interface at %L must be "
"INTENT(IN)", &sym->declared_at);
return false;
}
if (args == 2 && i2 != INTENT_IN)
{
gfc_error ("Second argument of operator interface at %L must be "
"INTENT(IN)", &sym->declared_at);
return false;
}
}
/* From now on, all we have to do is check that the operator definition
doesn't conflict with an intrinsic operator. The rules for this
game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
as well as 12.3.2.1.1 of Fortran 2003:
"If the operator is an intrinsic-operator (R310), the number of
function arguments shall be consistent with the intrinsic uses of
that operator, and the types, kind type parameters, or ranks of the
dummy arguments shall differ from those required for the intrinsic
operation (7.1.2)." */
#define IS_NUMERIC_TYPE(t) \
((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
/* Unary ops are easy, do them first. */
if (op == INTRINSIC_NOT)
{
if (t1 == BT_LOGICAL)
goto bad_repl;
else
return true;
}
if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
{
if (IS_NUMERIC_TYPE (t1))
goto bad_repl;
else
return true;
}
/* Character intrinsic operators have same character kind, thus
operator definitions with operands of different character kinds
are always safe. */
if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
return true;
/* Intrinsic operators always perform on arguments of same rank,
so different ranks is also always safe. (rank == 0) is an exception
to that, because all intrinsic operators are elemental. */
if (r1 != r2 && r1 != 0 && r2 != 0)
return true;
switch (op)
{
case INTRINSIC_EQ:
case INTRINSIC_EQ_OS:
case INTRINSIC_NE:
case INTRINSIC_NE_OS:
if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
goto bad_repl;
/* Fall through. */
case INTRINSIC_PLUS:
case INTRINSIC_MINUS:
case INTRINSIC_TIMES:
case INTRINSIC_DIVIDE:
case INTRINSIC_POWER:
if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
goto bad_repl;
break;
case INTRINSIC_GT:
case INTRINSIC_GT_OS:
case INTRINSIC_GE:
case INTRINSIC_GE_OS:
case INTRINSIC_LT:
case INTRINSIC_LT_OS:
case INTRINSIC_LE:
case INTRINSIC_LE_OS:
if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
goto bad_repl;
if ((t1 == BT_INTEGER || t1 == BT_REAL)
&& (t2 == BT_INTEGER || t2 == BT_REAL))
goto bad_repl;
break;
case INTRINSIC_CONCAT:
if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
goto bad_repl;
break;
case INTRINSIC_AND:
case INTRINSIC_OR:
case INTRINSIC_EQV:
case INTRINSIC_NEQV:
if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
goto bad_repl;
break;
default:
break;
}
return true;
#undef IS_NUMERIC_TYPE
bad_repl:
gfc_error ("Operator interface at %L conflicts with intrinsic interface",
&opwhere);
return false;
}
/* Given a pair of formal argument lists, we see if the two lists can
be distinguished by counting the number of nonoptional arguments of
a given type/rank in f1 and seeing if there are less then that
number of those arguments in f2 (including optional arguments).
Since this test is asymmetric, it has to be called twice to make it
symmetric. Returns nonzero if the argument lists are incompatible
by this test. This subroutine implements rule 1 of section
14.1.2.3 in the Fortran 95 standard. */
static int
count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2)
{
int rc, ac1, ac2, i, j, k, n1;
gfc_formal_arglist *f;
typedef struct
{
int flag;
gfc_symbol *sym;
}
arginfo;
arginfo *arg;
n1 = 0;
for (f = f1; f; f = f->next)
n1++;
/* Build an array of integers that gives the same integer to
arguments of the same type/rank. */
arg = XCNEWVEC (arginfo, n1);
f = f1;
for (i = 0; i < n1; i++, f = f->next)
{
arg[i].flag = -1;
arg[i].sym = f->sym;
}
k = 0;
for (i = 0; i < n1; i++)
{
if (arg[i].flag != -1)
continue;
if (arg[i].sym && arg[i].sym->attr.optional)
continue; /* Skip optional arguments. */
arg[i].flag = k;
/* Find other nonoptional arguments of the same type/rank. */
for (j = i + 1; j < n1; j++)
if ((arg[j].sym == NULL || !arg[j].sym->attr.optional)
&& compare_type_rank_if (arg[i].sym, arg[j].sym))
arg[j].flag = k;
k++;
}
/* Now loop over each distinct type found in f1. */
k = 0;
rc = 0;
for (i = 0; i < n1; i++)
{
if (arg[i].flag != k)
continue;
ac1 = 1;
for (j = i + 1; j < n1; j++)
if (arg[j].flag == k)
ac1++;
/* Count the number of arguments in f2 with that type, including
those that are optional. */
ac2 = 0;
for (f = f2; f; f = f->next)
if (compare_type_rank_if (arg[i].sym, f->sym))
ac2++;
if (ac1 > ac2)
{
rc = 1;
break;
}
k++;
}
gfc_free (arg);
return rc;
}
/* Perform the correspondence test in rule 2 of section 14.1.2.3.
Returns zero if no argument is found that satisfies rule 2, nonzero
otherwise.
This test is also not symmetric in f1 and f2 and must be called
twice. This test finds problems caused by sorting the actual
argument list with keywords. For example:
INTERFACE FOO
SUBROUTINE F1(A, B)
INTEGER :: A ; REAL :: B
END SUBROUTINE F1
SUBROUTINE F2(B, A)
INTEGER :: A ; REAL :: B
END SUBROUTINE F1
END INTERFACE FOO
At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
static int
generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2)
{
gfc_formal_arglist *f2_save, *g;
gfc_symbol *sym;
f2_save = f2;
while (f1)
{
if (f1->sym->attr.optional)
goto next;
if (f2 != NULL && compare_type_rank (f1->sym, f2->sym))
goto next;
/* Now search for a disambiguating keyword argument starting at
the current non-match. */
for (g = f1; g; g = g->next)
{
if (g->sym->attr.optional)
continue;
sym = find_keyword_arg (g->sym->name, f2_save);
if (sym == NULL || !compare_type_rank (g->sym, sym))
return 1;
}
next:
f1 = f1->next;
if (f2 != NULL)
f2 = f2->next;
}
return 0;
}
/* 'Compare' two formal interfaces associated with a pair of symbols.
We return nonzero if there exists an actual argument list that
would be ambiguous between the two interfaces, zero otherwise.
'intent_flag' specifies whether INTENT and OPTIONAL of the arguments are
required to match, which is not the case for ambiguity checks.*/
int
gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
int generic_flag, int intent_flag,
char *errmsg, int err_len)
{
gfc_formal_arglist *f1, *f2;
gcc_assert (name2 != NULL);
if (s1->attr.function && (s2->attr.subroutine
|| (!s2->attr.function && s2->ts.type == BT_UNKNOWN
&& gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
{
if (errmsg != NULL)
snprintf (errmsg, err_len, "'%s' is not a function", name2);
return 0;
}
if (s1->attr.subroutine && s2->attr.function)
{
if (errmsg != NULL)
snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
return 0;
}
/* If the arguments are functions, check type and kind
(only for dummy procedures and procedure pointer assignments). */
if (!generic_flag && intent_flag && s1->attr.function && s2->attr.function)
{
if (s1->ts.type == BT_UNKNOWN)
return 1;
if ((s1->ts.type != s2->ts.type) || (s1->ts.kind != s2->ts.kind))
{
if (errmsg != NULL)
snprintf (errmsg, err_len, "Type/kind mismatch in return value "
"of '%s'", name2);
return 0;
}
}
if (s1->attr.if_source == IFSRC_UNKNOWN
|| s2->attr.if_source == IFSRC_UNKNOWN)
return 1;
f1 = s1->formal;
f2 = s2->formal;
if (f1 == NULL && f2 == NULL)
return 1; /* Special case: No arguments. */
if (generic_flag)
{
if (count_types_test (f1, f2) || count_types_test (f2, f1))
return 0;
if (generic_correspondence (f1, f2) || generic_correspondence (f2, f1))
return 0;
}
else
/* Perform the abbreviated correspondence test for operators (the
arguments cannot be optional and are always ordered correctly).
This is also done when comparing interfaces for dummy procedures and in
procedure pointer assignments. */
for (;;)
{
/* Check existence. */
if (f1 == NULL && f2 == NULL)
break;
if (f1 == NULL || f2 == NULL)
{
if (errmsg != NULL)
snprintf (errmsg, err_len, "'%s' has the wrong number of "
"arguments", name2);
return 0;
}
/* Check type and rank. */
if (!compare_type_rank (f1->sym, f2->sym))
{
if (errmsg != NULL)
snprintf (errmsg, err_len, "Type/rank mismatch in argument '%s'",
f1->sym->name);
return 0;
}
/* Check INTENT. */
if (intent_flag && (f1->sym->attr.intent != f2->sym->attr.intent))
{
snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
f1->sym->name);
return 0;
}
/* Check OPTIONAL. */
if (intent_flag && (f1->sym->attr.optional != f2->sym->attr.optional))
{
snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
f1->sym->name);
return 0;
}
f1 = f1->next;
f2 = f2->next;
}
return 1;
}
/* Given a pointer to an interface pointer, remove duplicate
interfaces and make sure that all symbols are either functions or
subroutines. Returns nonzero if something goes wrong. */
static int
check_interface0 (gfc_interface *p, const char *interface_name)
{
gfc_interface *psave, *q, *qlast;
psave = p;
/* Make sure all symbols in the interface have been defined as
functions or subroutines. */
for (; p; p = p->next)
if ((!p->sym->attr.function && !p->sym->attr.subroutine)
|| !p->sym->attr.if_source)
{
if (p->sym->attr.external)
gfc_error ("Procedure '%s' in %s at %L has no explicit interface",
p->sym->name, interface_name, &p->sym->declared_at);
else
gfc_error ("Procedure '%s' in %s at %L is neither function nor "
"subroutine", p->sym->name, interface_name,
&p->sym->declared_at);
return 1;
}
p = psave;
/* Remove duplicate interfaces in this interface list. */
for (; p; p = p->next)
{
qlast = p;
for (q = p->next; q;)
{
if (p->sym != q->sym)
{
qlast = q;
q = q->next;
}
else
{
/* Duplicate interface. */
qlast->next = q->next;
gfc_free (q);
q = qlast->next;
}
}
}
return 0;
}
/* Check lists of interfaces to make sure that no two interfaces are
ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
static int
check_interface1 (gfc_interface *p, gfc_interface *q0,
int generic_flag, const char *interface_name,
bool referenced)
{
gfc_interface *q;
for (; p; p = p->next)
for (q = q0; q; q = q->next)
{
if (p->sym == q->sym)
continue; /* Duplicates OK here. */
if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
continue;
if (gfc_compare_interfaces (p->sym, q->sym, q->sym->name, generic_flag,
0, NULL, 0))
{
if (referenced)
gfc_error ("Ambiguous interfaces '%s' and '%s' in %s at %L",
p->sym->name, q->sym->name, interface_name,
&p->where);
else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
gfc_warning ("Ambiguous interfaces '%s' and '%s' in %s at %L",
p->sym->name, q->sym->name, interface_name,
&p->where);
else
gfc_warning ("Although not referenced, '%s' has ambiguous "
"interfaces at %L", interface_name, &p->where);
return 1;
}
}
return 0;
}
/* Check the generic and operator interfaces of symbols to make sure
that none of the interfaces conflict. The check has to be done
after all of the symbols are actually loaded. */
static void
check_sym_interfaces (gfc_symbol *sym)
{
char interface_name[100];
gfc_interface *p;
if (sym->ns != gfc_current_ns)
return;
if (sym->generic != NULL)
{
sprintf (interface_name, "generic interface '%s'", sym->name);
if (check_interface0 (sym->generic, interface_name))
return;
for (p = sym->generic; p; p = p->next)
{
if (p->sym->attr.mod_proc
&& (p->sym->attr.if_source != IFSRC_DECL
|| p->sym->attr.procedure))
{
gfc_error ("'%s' at %L is not a module procedure",
p->sym->name, &p->where);
return;
}
}
/* Originally, this test was applied to host interfaces too;
this is incorrect since host associated symbols, from any
source, cannot be ambiguous with local symbols. */
check_interface1 (sym->generic, sym->generic, 1, interface_name,
sym->attr.referenced || !sym->attr.use_assoc);
}
}
static void
check_uop_interfaces (gfc_user_op *uop)
{
char interface_name[100];
gfc_user_op *uop2;
gfc_namespace *ns;
sprintf (interface_name, "operator interface '%s'", uop->name);
if (check_interface0 (uop->op, interface_name))
return;
for (ns = gfc_current_ns; ns; ns = ns->parent)
{
uop2 = gfc_find_uop (uop->name, ns);
if (uop2 == NULL)
continue;
check_interface1 (uop->op, uop2->op, 0,
interface_name, true);
}
}
/* For the namespace, check generic, user operator and intrinsic
operator interfaces for consistency and to remove duplicate
interfaces. We traverse the whole namespace, counting on the fact
that most symbols will not have generic or operator interfaces. */
void
gfc_check_interfaces (gfc_namespace *ns)
{
gfc_namespace *old_ns, *ns2;
char interface_name[100];
int i;
old_ns = gfc_current_ns;
gfc_current_ns = ns;
gfc_traverse_ns (ns, check_sym_interfaces);
gfc_traverse_user_op (ns, check_uop_interfaces);
for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
{
if (i == INTRINSIC_USER)
continue;
if (i == INTRINSIC_ASSIGN)
strcpy (interface_name, "intrinsic assignment operator");
else
sprintf (interface_name, "intrinsic '%s' operator",
gfc_op2string ((gfc_intrinsic_op) i));
if (check_interface0 (ns->op[i], interface_name))
continue;
if (ns->op[i])
gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
ns->op[i]->where);
for (ns2 = ns; ns2; ns2 = ns2->parent)
{
if (check_interface1 (ns->op[i], ns2->op[i], 0,
interface_name, true))
goto done;
switch (i)
{
case INTRINSIC_EQ:
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_EQ_OS],
0, interface_name, true)) goto done;
break;
case INTRINSIC_EQ_OS:
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_EQ],
0, interface_name, true)) goto done;
break;
case INTRINSIC_NE:
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_NE_OS],
0, interface_name, true)) goto done;
break;
case INTRINSIC_NE_OS:
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_NE],
0, interface_name, true)) goto done;
break;
case INTRINSIC_GT:
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GT_OS],
0, interface_name, true)) goto done;
break;
case INTRINSIC_GT_OS:
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GT],
0, interface_name, true)) goto done;
break;
case INTRINSIC_GE:
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GE_OS],
0, interface_name, true)) goto done;
break;
case INTRINSIC_GE_OS:
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GE],
0, interface_name, true)) goto done;
break;
case INTRINSIC_LT:
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LT_OS],
0, interface_name, true)) goto done;
break;
case INTRINSIC_LT_OS:
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LT],
0, interface_name, true)) goto done;
break;
case INTRINSIC_LE:
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LE_OS],
0, interface_name, true)) goto done;
break;
case INTRINSIC_LE_OS:
if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LE],
0, interface_name, true)) goto done;
break;
default:
break;
}
}
}
done:
gfc_current_ns = old_ns;
}
static int
symbol_rank (gfc_symbol *sym)
{
return (sym->as == NULL) ? 0 : sym->as->rank;
}
/* Given a symbol of a formal argument list and an expression, if the
formal argument is allocatable, check that the actual argument is
allocatable. Returns nonzero if compatible, zero if not compatible. */
static int
compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
{
symbol_attribute attr;
if (formal->attr.allocatable)
{
attr = gfc_expr_attr (actual);
if (!attr.allocatable)
return 0;
}
return 1;
}
/* Given a symbol of a formal argument list and an expression, if the
formal argument is a pointer, see if the actual argument is a
pointer. Returns nonzero if compatible, zero if not compatible. */
static int
compare_pointer (gfc_symbol *formal, gfc_expr *actual)
{
symbol_attribute attr;
if (formal->attr.pointer)
{
attr = gfc_expr_attr (actual);
if (!attr.pointer)
return 0;
}
return 1;
}
/* Given a symbol of a formal argument list and an expression, see if
the two are compatible as arguments. Returns nonzero if
compatible, zero if not compatible. */
static int
compare_parameter (gfc_symbol *formal, gfc_expr *actual,
int ranks_must_agree, int is_elemental, locus *where)
{
gfc_ref *ref;
bool rank_check;
/* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
procs c_f_pointer or c_f_procpointer, and we need to accept most
pointers the user could give us. This should allow that. */
if (formal->ts.type == BT_VOID)
return 1;
if (formal->ts.type == BT_DERIVED
&& formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
&& actual->ts.type == BT_DERIVED
&& actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
return 1;
if (actual->ts.type == BT_PROCEDURE)
{
char err[200];
gfc_symbol *act_sym = actual->symtree->n.sym;
if (formal->attr.flavor != FL_PROCEDURE)
{
if (where)
gfc_error ("Invalid procedure argument at %L", &actual->where);
return 0;
}
if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
sizeof(err)))
{
if (where)
gfc_error ("Interface mismatch in dummy procedure '%s' at %L: %s",
formal->name, &actual->where, err);
return 0;
}
if (formal->attr.function && !act_sym->attr.function)
{
gfc_add_function (&act_sym->attr, act_sym->name,
&act_sym->declared_at);
if (act_sym->ts.type == BT_UNKNOWN
&& gfc_set_default_type (act_sym, 1, act_sym->ns) == FAILURE)
return 0;
}
else if (formal->attr.subroutine && !act_sym->attr.subroutine)
gfc_add_subroutine (&act_sym->attr, act_sym->name,
&act_sym->declared_at);
return 1;
}
if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
&& !gfc_compare_types (&formal->ts, &actual->ts))
{
if (where)
gfc_error ("Type mismatch in argument '%s' at %L; passed %s to %s",
formal->name, &actual->where, gfc_typename (&actual->ts),
gfc_typename (&formal->ts));
return 0;
}
if (formal->attr.codimension)
{
gfc_ref *last = NULL;
if (actual->expr_type != EXPR_VARIABLE
|| (actual->ref == NULL
&& !actual->symtree->n.sym->attr.codimension))
{
if (where)
gfc_error ("Actual argument to '%s' at %L must be a coarray",
formal->name, &actual->where);
return 0;
}
for (ref = actual->ref; ref; ref = ref->next)
{
if (ref->type == REF_ARRAY && ref->u.ar.codimen != 0)
{
if (where)
gfc_error ("Actual argument to '%s' at %L must be a coarray "
"and not coindexed", formal->name, &ref->u.ar.where);
return 0;
}
if (ref->type == REF_ARRAY && ref->u.ar.as->corank
&& ref->u.ar.type != AR_FULL && ref->u.ar.dimen != 0)
{
if (where)
gfc_error ("Actual argument to '%s' at %L must be a coarray "
"and thus shall not have an array designator",
formal->name, &ref->u.ar.where);
return 0;
}
if (ref->type == REF_COMPONENT)
last = ref;
}
if (last && !last->u.c.component->attr.codimension)
{
if (where)
gfc_error ("Actual argument to '%s' at %L must be a coarray",
formal->name, &actual->where);
return 0;
}
/* F2008, 12.5.2.6. */
if (formal->attr.allocatable &&
((last && last->u.c.component->as->corank != formal->as->corank)
|| (!last
&& actual->symtree->n.sym->as->corank != formal->as->corank)))
{
if (where)
gfc_error ("Corank mismatch in argument '%s' at %L (%d and %d)",
formal->name, &actual->where, formal->as->corank,
last ? last->u.c.component->as->corank
: actual->symtree->n.sym->as->corank);
return 0;
}
}
if (symbol_rank (formal) == actual->rank)
return 1;
rank_check = where != NULL && !is_elemental && formal->as
&& (formal->as->type == AS_ASSUMED_SHAPE
|| formal->as->type == AS_DEFERRED)
&& actual->expr_type != EXPR_NULL;
/* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
if (rank_check || ranks_must_agree
|| (formal->attr.pointer && actual->expr_type != EXPR_NULL)
|| (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
|| (actual->rank == 0 && formal->as->type == AS_ASSUMED_SHAPE)
|| (actual->rank == 0 && formal->attr.dimension
&& gfc_is_coindexed (actual)))
{
if (where)
gfc_error ("Rank mismatch in argument '%s' at %L (%d and %d)",
formal->name, &actual->where, symbol_rank (formal),
actual->rank);
return 0;
}
else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
return 1;
/* At this point, we are considering a scalar passed to an array. This
is valid (cf. F95 12.4.1.1; F2003 12.4.1.2),
- if the actual argument is (a substring of) an element of a
non-assumed-shape/non-pointer array;
- (F2003) if the actual argument is of type character. */
for (ref = actual->ref; ref; ref = ref->next)
if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
&& ref->u.ar.dimen > 0)
break;
/* Not an array element. */
if (formal->ts.type == BT_CHARACTER
&& (ref == NULL
|| (actual->expr_type == EXPR_VARIABLE
&& (actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
|| actual->symtree->n.sym->attr.pointer))))
{
if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
{
gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
"array dummy argument '%s' at %L",
formal->name, &actual->where);
return 0;
}
else if ((gfc_option.allow_std & GFC_STD_F2003) == 0)
return 0;
else
return 1;
}
else if (ref == NULL && actual->expr_type != EXPR_NULL)
{
if (where)
gfc_error ("Rank mismatch in argument '%s' at %L (%d and %d)",
formal->name, &actual->where, symbol_rank (formal),
actual->rank);
return 0;
}
if (actual->expr_type == EXPR_VARIABLE
&& actual->symtree->n.sym->as
&& (actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
|| actual->symtree->n.sym->attr.pointer))
{
if (where)
gfc_error ("Element of assumed-shaped array passed to dummy "
"argument '%s' at %L", formal->name, &actual->where);
return 0;
}
return 1;
}
/* Given a symbol of a formal argument list and an expression, see if
the two are compatible as arguments. Returns nonzero if
compatible, zero if not compatible. */
static int
compare_parameter_protected (gfc_symbol *formal, gfc_expr *actual)
{
if (actual->expr_type != EXPR_VARIABLE)
return 1;
if (!actual->symtree->n.sym->attr.is_protected)
return 1;
if (!actual->symtree->n.sym->attr.use_assoc)
return 1;
if (formal->attr.intent == INTENT_IN
|| formal->attr.intent == INTENT_UNKNOWN)
return 1;
if (!actual->symtree->n.sym->attr.pointer)
return 0;
if (actual->symtree->n.sym->attr.pointer && formal->attr.pointer)
return 0;
return 1;
}
/* Returns the storage size of a symbol (formal argument) or
zero if it cannot be determined. */
static unsigned long
get_sym_storage_size (gfc_symbol *sym)
{
int i;
unsigned long strlen, elements;
if (sym->ts.type == BT_CHARACTER)
{
if (sym->ts.u.cl && sym->ts.u.cl->length
&& sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
else
return 0;
}
else
strlen = 1;
if (symbol_rank (sym) == 0)
return strlen;
elements = 1;
if (sym->as->type != AS_EXPLICIT)
return 0;
for (i = 0; i < sym->as->rank; i++)
{
if (!sym->as || sym->as->upper[i]->expr_type != EXPR_CONSTANT
|| sym->as->lower[i]->expr_type != EXPR_CONSTANT)
return 0;
elements *= mpz_get_ui (sym->as->upper[i]->value.integer)
- mpz_get_ui (sym->as->lower[i]->value.integer) + 1L;
}
return strlen*elements;
}
/* Returns the storage size of an expression (actual argument) or
zero if it cannot be determined. For an array element, it returns
the remaining size as the element sequence consists of all storage
units of the actual argument up to the end of the array. */
static unsigned long
get_expr_storage_size (gfc_expr *e)
{
int i;
long int strlen, elements;
long int substrlen = 0;
bool is_str_storage = false;
gfc_ref *ref;
if (e == NULL)
return 0;
if (e->ts.type == BT_CHARACTER)
{
if (e->ts.u.cl && e->ts.u.cl->length
&& e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
else if (e->expr_type == EXPR_CONSTANT
&& (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
strlen = e->value.character.length;
else
return 0;
}
else
strlen = 1; /* Length per element. */
if (e->rank == 0 && !e->ref)
return strlen;
elements = 1;
if (!e->ref)
{
if (!e->shape)
return 0;
for (i = 0; i < e->rank; i++)
elements *= mpz_get_si (e->shape[i]);
return elements*strlen;
}
for (ref = e->ref; ref; ref = ref->next)
{
if (ref->type == REF_SUBSTRING && ref->u.ss.start
&& ref->u.ss.start->expr_type == EXPR_CONSTANT)
{
if (is_str_storage)
{
/* The string length is the substring length.
Set now to full string length. */
if (ref->u.ss.length == NULL
|| ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
return 0;
strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
}
substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
continue;
}
if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION
&& ref->u.ar.start && ref->u.ar.end && ref->u.ar.stride
&& ref->u.ar.as->upper)
for (i = 0; i < ref->u.ar.dimen; i++)
{
long int start, end, stride;
stride = 1;
if (ref->u.ar.stride[i])
{
if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
else
return 0;
}
if (ref->u.ar.start[i])
{
if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
start = mpz_get_si (ref->u.ar.start[i]->value.integer);
else
return 0;
}
else if (ref->u.ar.as->lower[i]
&& ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
else
return 0;
if (ref->u.ar.end[i])
{
if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
end = mpz_get_si (ref->u.ar.end[i]->value.integer);
else
return 0;
}
else if (ref->u.ar.as->upper[i]
&& ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
else
return 0;
elements *= (end - start)/stride + 1L;
}
else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL
&& ref->u.ar.as->lower && ref->u.ar.as->upper)
for (i = 0; i < ref->u.ar.as->rank; i++)
{
if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
&& ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
&& ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
- mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
+ 1L;
else
return 0;
}
else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
&& e->expr_type == EXPR_VARIABLE)
{
if (e->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
|| e->symtree->n.sym->attr.pointer)
{
elements = 1;
continue;
}
/* Determine the number of remaining elements in the element
sequence for array element designators. */
is_str_storage = true;
for (i = ref->u.ar.dimen - 1; i >= 0; i--)
{
if (ref->u.ar.start[i] == NULL
|| ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
|| ref->u.ar.as->upper[i] == NULL
|| ref->u.ar.as->lower[i] == NULL
|| ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
|| ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
return 0;
elements
= elements
* (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
- mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
+ 1L)
- (mpz_get_si (ref->u.ar.start[i]->value.integer)
- mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
}
}
else
return 0;
}
if (substrlen)
return (is_str_storage) ? substrlen + (elements-1)*strlen
: elements*strlen;
else
return elements*strlen;
}
/* Given an expression, check whether it is an array section
which has a vector subscript. If it has, one is returned,
otherwise zero. */
static int
has_vector_subscript (gfc_expr *e)
{
int i;
gfc_ref *ref;
if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
return 0;
for (ref = e->ref; ref; ref = ref->next)
if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
for (i = 0; i < ref->u.ar.dimen; i++)
if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
return 1;
return 0;
}
/* Given formal and actual argument lists, see if they are compatible.
If they are compatible, the actual argument list is sorted to
correspond with the formal list, and elements for missing optional
arguments are inserted. If WHERE pointer is nonnull, then we issue
errors when things don't match instead of just returning the status
code. */
static int
compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
int ranks_must_agree, int is_elemental, locus *where)
{
gfc_actual_arglist **new_arg, *a, *actual, temp;
gfc_formal_arglist *f;
int i, n, na;
unsigned long actual_size, formal_size;
actual = *ap;
if (actual == NULL && formal == NULL)
return 1;
n = 0;
for (f = formal; f; f = f->next)
n++;
new_arg = (gfc_actual_arglist **) alloca (n * sizeof (gfc_actual_arglist *));
for (i = 0; i < n; i++)
new_arg[i] = NULL;
na = 0;
f = formal;
i = 0;
for (a = actual; a; a = a->next, f = f->next)
{
/* Look for keywords but ignore g77 extensions like %VAL. */
if (a->name != NULL && a->name[0] != '%')
{
i = 0;
for (f = formal; f; f = f->next, i++)
{
if (f->sym == NULL)
continue;
if (strcmp (f->sym->name, a->name) == 0)
break;
}
if (f == NULL)
{
if (where)
gfc_error ("Keyword argument '%s' at %L is not in "
"the procedure", a->name, &a->expr->where);
return 0;
}
if (new_arg[i] != NULL)
{
if (where)
gfc_error ("Keyword argument '%s' at %L is already associated "
"with another actual argument", a->name,
&a->expr->where);
return 0;
}
}
if (f == NULL)
{
if (where)
gfc_error ("More actual than formal arguments in procedure "
"call at %L", where);
return 0;
}
if (f->sym == NULL && a->expr == NULL)
goto match;
if (f->sym == NULL)
{
if (where)
gfc_error ("Missing alternate return spec in subroutine call "
"at %L", where);
return 0;
}
if (a->expr == NULL)
{
if (where)
gfc_error ("Unexpected alternate return spec in subroutine "
"call at %L", where);
return 0;
}
if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
is_elemental, where))
return 0;
/* Special case for character arguments. For allocatable, pointer
and assumed-shape dummies, the string length needs to match
exactly. */
if (a->expr->ts.type == BT_CHARACTER
&& a->expr->ts.u.cl && a->expr->ts.u.cl->length
&& a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
&& f->sym->ts.u.cl && f->sym->ts.u.cl && f->sym->ts.u.cl->length
&& f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
&& (f->sym->attr.pointer || f->sym->attr.allocatable
|| (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
&& (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
f->sym->ts.u.cl->length->value.integer) != 0))
{
if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
gfc_warning ("Character length mismatch (%ld/%ld) between actual "
"argument and pointer or allocatable dummy argument "
"'%s' at %L",
mpz_get_si (a->expr->ts.u.cl->length->value.integer),
mpz_get_si (f->sym->ts.u.cl->length->value.integer),
f->sym->name, &a->expr->where);
else if (where)
gfc_warning ("Character length mismatch (%ld/%ld) between actual "
"argument and assumed-shape dummy argument '%s' "
"at %L",
mpz_get_si (a->expr->ts.u.cl->length->value.integer),
mpz_get_si (f->sym->ts.u.cl->length->value.integer),
f->sym->name, &a->expr->where);
return 0;
}
actual_size = get_expr_storage_size (a->expr);
formal_size = get_sym_storage_size (f->sym);
if (actual_size != 0
&& actual_size < formal_size
&& a->expr->ts.type != BT_PROCEDURE)
{
if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
gfc_warning ("Character length of actual argument shorter "
"than of dummy argument '%s' (%lu/%lu) at %L",
f->sym->name, actual_size, formal_size,
&a->expr->where);
else if (where)
gfc_warning ("Actual argument contains too few "
"elements for dummy argument '%s' (%lu/%lu) at %L",
f->sym->name, actual_size, formal_size,
&a->expr->where);
return 0;
}
/* Satisfy 12.4.1.3 by ensuring that a procedure pointer actual argument
is provided for a procedure pointer formal argument. */
if (f->sym->attr.proc_pointer
&& !((a->expr->expr_type == EXPR_VARIABLE
&& a->expr->symtree->n.sym->attr.proc_pointer)
|| (a->expr->expr_type == EXPR_FUNCTION
&& a->expr->symtree->n.sym->result->attr.proc_pointer)
|| gfc_is_proc_ptr_comp (a->expr, NULL)))
{
if (where)
gfc_error ("Expected a procedure pointer for argument '%s' at %L",
f->sym->name, &a->expr->where);
return 0;
}
/* Satisfy 12.4.1.2 by ensuring that a procedure actual argument is
provided for a procedure formal argument. */
if (a->expr->ts.type != BT_PROCEDURE && !gfc_is_proc_ptr_comp (a->expr, NULL)
&& a->expr->expr_type == EXPR_VARIABLE
&& f->sym->attr.flavor == FL_PROCEDURE)
{
if (where)
gfc_error ("Expected a procedure for argument '%s' at %L",
f->sym->name, &a->expr->where);
return 0;
}
if (f->sym->attr.flavor == FL_PROCEDURE && f->sym->attr.pure
&& a->expr->ts.type == BT_PROCEDURE
&& !a->expr->symtree->n.sym->attr.pure)
{
if (where)
gfc_error ("Expected a PURE procedure for argument '%s' at %L",
f->sym->name, &a->expr->where);
return 0;
}
if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
&& a->expr->expr_type == EXPR_VARIABLE
&& a->expr->symtree->n.sym->as
&& a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
&& (a->expr->ref == NULL
|| (a->expr->ref->type == REF_ARRAY
&& a->expr->ref->u.ar.type == AR_FULL)))
{
if (where)
gfc_error ("Actual argument for '%s' cannot be an assumed-size"
" array at %L", f->sym->name, where);
return 0;
}
if (a->expr->expr_type != EXPR_NULL
&& compare_pointer (f->sym, a->expr) == 0)
{
if (where)
gfc_error ("Actual argument for '%s' must be a pointer at %L",
f->sym->name, &a->expr->where);
return 0;
}
/* Fortran 2008, C1242. */
if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
{
if (where)
gfc_error ("Coindexed actual argument at %L to pointer "
"dummy '%s'",
&a->expr->where, f->sym->name);
return 0;
}
/* Fortran 2008, 12.5.2.5 (no constraint). */
if (a->expr->expr_type == EXPR_VARIABLE
&& f->sym->attr.intent != INTENT_IN
&& f->sym->attr.allocatable
&& gfc_is_coindexed (a->expr))
{
if (where)
gfc_error ("Coindexed actual argument at %L to allocatable "
"dummy '%s' requires INTENT(IN)",
&a->expr->where, f->sym->name);
return 0;
}
/* Fortran 2008, C1237. */
if (a->expr->expr_type == EXPR_VARIABLE
&& (f->sym->attr.asynchronous || f->sym->attr.volatile_)
&& gfc_is_coindexed (a->expr)
&& (a->expr->symtree->n.sym->attr.volatile_
|| a->expr->symtree->n.sym->attr.asynchronous))
{
if (where)
gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
"at %L requires that dummy %s' has neither "
"ASYNCHRONOUS nor VOLATILE", &a->expr->where,
f->sym->name);
return 0;
}
/* Fortran 2008, 12.5.2.4 (no constraint). */
if (a->expr->expr_type == EXPR_VARIABLE
&& f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
&& gfc_is_coindexed (a->expr)
&& gfc_has_ultimate_allocatable (a->expr))
{
if (where)
gfc_error ("Coindexed actual argument at %L with allocatable "
"ultimate component to dummy '%s' requires either VALUE "
"or INTENT(IN)", &a->expr->where, f->sym->name);
return 0;
}
if (a->expr->expr_type != EXPR_NULL
&& compare_allocatable (f->sym, a->expr) == 0)
{
if (where)
gfc_error ("Actual argument for '%s' must be ALLOCATABLE at %L",
f->sym->name, &a->expr->where);
return 0;
}
/* Check intent = OUT/INOUT for definable actual argument. */
if ((a->expr->expr_type != EXPR_VARIABLE
|| (a->expr->symtree->n.sym->attr.flavor != FL_VARIABLE
&& a->expr->symtree->n.sym->attr.flavor != FL_PROCEDURE))
&& (f->sym->attr.intent == INTENT_OUT
|| f->sym->attr.intent == INTENT_INOUT))
{
if (where)
gfc_error ("Actual argument at %L must be definable as "
"the dummy argument '%s' is INTENT = OUT/INOUT",
&a->expr->where, f->sym->name);
return 0;
}
if (!compare_parameter_protected(f->sym, a->expr))
{
if (where)
gfc_error ("Actual argument at %L is use-associated with "
"PROTECTED attribute and dummy argument '%s' is "
"INTENT = OUT/INOUT",
&a->expr->where,f->sym->name);
return 0;
}
if ((f->sym->attr.intent == INTENT_OUT
|| f->sym->attr.intent == INTENT_INOUT
|| f->sym->attr.volatile_)
&& has_vector_subscript (a->expr))
{
if (where)
gfc_error ("Array-section actual argument with vector subscripts "
"at %L is incompatible with INTENT(OUT), INTENT(INOUT) "
"or VOLATILE attribute of the dummy argument '%s'",
&a->expr->where, f->sym->name);
return 0;
}
/* C1232 (R1221) For an actual argument which is an array section or
an assumed-shape array, the dummy argument shall be an assumed-
shape array, if the dummy argument has the VOLATILE attribute. */
if (f->sym->attr.volatile_
&& a->expr->symtree->n.sym->as
&& a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
&& !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
{
if (where)
gfc_error ("Assumed-shape actual argument at %L is "
"incompatible with the non-assumed-shape "
"dummy argument '%s' due to VOLATILE attribute",
&a->expr->where,f->sym->name);
return 0;
}
if (f->sym->attr.volatile_
&& a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION
&& !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
{
if (where)
gfc_error ("Array-section actual argument at %L is "
"incompatible with the non-assumed-shape "
"dummy argument '%s' due to VOLATILE attribute",
&a->expr->where,f->sym->name);
return 0;
}
/* C1233 (R1221) For an actual argument which is a pointer array, the
dummy argument shall be an assumed-shape or pointer array, if the
dummy argument has the VOLATILE attribute. */
if (f->sym->attr.volatile_
&& a->expr->symtree->n.sym->attr.pointer
&& a->expr->symtree->n.sym->as
&& !(f->sym->as
&& (f->sym->as->type == AS_ASSUMED_SHAPE
|| f->sym->attr.pointer)))
{
if (where)
gfc_error ("Pointer-array actual argument at %L requires "
"an assumed-shape or pointer-array dummy "
"argument '%s' due to VOLATILE attribute",
&a->expr->where,f->sym->name);
return 0;
}
match:
if (a == actual)
na = i;
new_arg[i++] = a;
}
/* Make sure missing actual arguments are optional. */
i = 0;
for (f = formal; f; f = f->next, i++)
{
if (new_arg[i] != NULL)
continue;
if (f->sym == NULL)
{
if (where)
gfc_error ("Missing alternate return spec in subroutine call "
"at %L", where);
return 0;
}
if (!f->sym->attr.optional)
{
if (where)
gfc_error ("Missing actual argument for argument '%s' at %L",
f->sym->name, where);
return 0;
}
}
/* The argument lists are compatible. We now relink a new actual
argument list with null arguments in the right places. The head
of the list remains the head. */
for (i = 0; i < n; i++)
if (new_arg[i] == NULL)
new_arg[i] = gfc_get_actual_arglist ();
if (na != 0)
{
temp = *new_arg[0];
*new_arg[0] = *actual;
*actual = temp;
a = new_arg[0];
new_arg[0] = new_arg[na];
new_arg[na] = a;
}
for (i = 0; i < n - 1; i++)
new_arg[i]->next = new_arg[i + 1];
new_arg[i]->next = NULL;
if (*ap == NULL && n > 0)
*ap = new_arg[0];
/* Note the types of omitted optional arguments. */
for (a = *ap, f = formal; a; a = a->next, f = f->next)
if (a->expr == NULL && a->label == NULL)
a->missing_arg_type = f->sym->ts.type;
return 1;
}
typedef struct
{
gfc_formal_arglist *f;
gfc_actual_arglist *a;
}
argpair;
/* qsort comparison function for argument pairs, with the following
order:
- p->a->expr == NULL
- p->a->expr->expr_type != EXPR_VARIABLE
- growing p->a->expr->symbol. */
static int
pair_cmp (const void *p1, const void *p2)
{
const gfc_actual_arglist *a1, *a2;
/* *p1 and *p2 are elements of the to-be-sorted array. */
a1 = ((const argpair *) p1)->a;
a2 = ((const argpair *) p2)->a;
if (!a1->expr)
{
if (!a2->expr)
return 0;
return -1;
}
if (!a2->expr)
return 1;
if (a1->expr->expr_type != EXPR_VARIABLE)
{
if (a2->expr->expr_type != EXPR_VARIABLE)
return 0;
return -1;
}
if (a2->expr->expr_type != EXPR_VARIABLE)
return 1;
return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
}
/* Given two expressions from some actual arguments, test whether they
refer to the same expression. The analysis is conservative.
Returning FAILURE will produce no warning. */
static gfc_try
compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
{
const gfc_ref *r1, *r2;
if (!e1 || !e2
|| e1->expr_type != EXPR_VARIABLE
|| e2->expr_type != EXPR_VARIABLE
|| e1->symtree->n.sym != e2->symtree->n.sym)
return FAILURE;
/* TODO: improve comparison, see expr.c:show_ref(). */
for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
{
if (r1->type != r2->type)
return FAILURE;
switch (r1->type)
{
case REF_ARRAY:
if (r1->u.ar.type != r2->u.ar.type)
return FAILURE;
/* TODO: At the moment, consider only full arrays;
we could do better. */
if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
return FAILURE;
break;
case REF_COMPONENT:
if (r1->u.c.component != r2->u.c.component)
return FAILURE;
break;
case REF_SUBSTRING:
return FAILURE;
default:
gfc_internal_error ("compare_actual_expr(): Bad component code");
}
}
if (!r1 && !r2)
return SUCCESS;
return FAILURE;
}
/* Given formal and actual argument lists that correspond to one
another, check that identical actual arguments aren't not
associated with some incompatible INTENTs. */
static gfc_try
check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
{
sym_intent f1_intent, f2_intent;
gfc_formal_arglist *f1;
gfc_actual_arglist *a1;
size_t n, i, j;
argpair *p;
gfc_try t = SUCCESS;
n = 0;
for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
{
if (f1 == NULL && a1 == NULL)
break;
if (f1 == NULL || a1 == NULL)
gfc_internal_error ("check_some_aliasing(): List mismatch");
n++;
}
if (n == 0)
return t;
p = (argpair *) alloca (n * sizeof (argpair));
for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
{
p[i].f = f1;
p[i].a = a1;
}
qsort (p, n, sizeof (argpair), pair_cmp);
for (i = 0; i < n; i++)
{
if (!p[i].a->expr
|| p[i].a->expr->expr_type != EXPR_VARIABLE
|| p[i].a->expr->ts.type == BT_PROCEDURE)
continue;
f1_intent = p[i].f->sym->attr.intent;
for (j = i + 1; j < n; j++)
{
/* Expected order after the sort. */
if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
gfc_internal_error ("check_some_aliasing(): corrupted data");
/* Are the expression the same? */
if (compare_actual_expr (p[i].a->expr, p[j].a->expr) == FAILURE)
break;
f2_intent = p[j].f->sym->attr.intent;
if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
|| (f1_intent == INTENT_OUT && f2_intent == INTENT_IN))
{
gfc_warning ("Same actual argument associated with INTENT(%s) "
"argument '%s' and INTENT(%s) argument '%s' at %L",
gfc_intent_string (f1_intent), p[i].f->sym->name,
gfc_intent_string (f2_intent), p[j].f->sym->name,
&p[i].a->expr->where);
t = FAILURE;
}
}
}
return t;
}
/* Given a symbol of a formal argument list and an expression,
return nonzero if their intents are compatible, zero otherwise. */
static int
compare_parameter_intent (gfc_symbol *formal, gfc_expr *actual)
{
if (actual->symtree->n.sym->attr.pointer && !formal->attr.pointer)
return 1;
if (actual->symtree->n.sym->attr.intent != INTENT_IN)
return 1;
if (formal->attr.intent == INTENT_INOUT || formal->attr.intent == INTENT_OUT)
return 0;
return 1;
}
/* Given formal and actual argument lists that correspond to one
another, check that they are compatible in the sense that intents
are not mismatched. */
static gfc_try
check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
{
sym_intent f_intent;
for (;; f = f->next, a = a->next)
{
if (f == NULL && a == NULL)
break;
if (f == NULL || a == NULL)
gfc_internal_error ("check_intents(): List mismatch");
if (a->expr == NULL || a->expr->expr_type != EXPR_VARIABLE)
continue;
f_intent = f->sym->attr.intent;
if (!compare_parameter_intent(f->sym, a->expr))
{
gfc_error ("Procedure argument at %L is INTENT(IN) while interface "
"specifies INTENT(%s)", &a->expr->where,
gfc_intent_string (f_intent));
return FAILURE;
}
if (gfc_pure (NULL) && gfc_impure_variable (a->expr->symtree->n.sym))
{
if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
{
gfc_error ("Procedure argument at %L is local to a PURE "
"procedure and is passed to an INTENT(%s) argument",
&a->expr->where, gfc_intent_string (f_intent));
return FAILURE;
}
if (f->sym->attr.pointer)
{
gfc_error ("Procedure argument at %L is local to a PURE "
"procedure and has the POINTER attribute",
&a->expr->where);
return FAILURE;
}
}
/* Fortran 2008, C1283. */
if (gfc_pure (NULL) && gfc_is_coindexed (a->expr))
{
if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
{
gfc_error ("Coindexed actual argument at %L in PURE procedure "
"is passed to an INTENT(%s) argument",
&a->expr->where, gfc_intent_string (f_intent));
return FAILURE;
}
if (f->sym->attr.pointer)
{
gfc_error ("Coindexed actual argument at %L in PURE procedure "
"is passed to a POINTER dummy argument",
&a->expr->where);
return FAILURE;
}
}
/* F2008, Section 12.5.2.4. */
if (a->expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
&& gfc_is_coindexed (a->expr))
{
gfc_error ("Coindexed polymorphic actual argument at %L is passed "
"polymorphic dummy argument '%s'",
&a->expr->where, f->sym->name);
return FAILURE;
}
}
return SUCCESS;
}
/* Check how a procedure is used against its interface. If all goes
well, the actual argument list will also end up being properly
sorted. */
void
gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
{
/* Warn about calls with an implicit interface. Special case
for calling a ISO_C_BINDING becase c_loc and c_funloc
are pseudo-unknown. Additionally, warn about procedures not
explicitly declared at all if requested. */
if (sym->attr.if_source == IFSRC_UNKNOWN && ! sym->attr.is_iso_c)
{
if (gfc_option.warn_implicit_interface)
gfc_warning ("Procedure '%s' called with an implicit interface at %L",
sym->name, where);
else if (gfc_option.warn_implicit_procedure
&& sym->attr.proc == PROC_UNKNOWN)
gfc_warning ("Procedure '%s' called at %L is not explicitly declared",
sym->name, where);
}
if (sym->attr.if_source == IFSRC_UNKNOWN)
{
gfc_actual_arglist *a;
for (a = *ap; a; a = a->next)
{
/* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
if (a->name != NULL && a->name[0] != '%')
{
gfc_error("Keyword argument requires explicit interface "
"for procedure '%s' at %L", sym->name, &a->expr->where);
break;
}
}
return;
}
if (!compare_actual_formal (ap, sym->formal, 0, sym->attr.elemental, where))
return;
check_intents (sym->formal, *ap);
if (gfc_option.warn_aliasing)
check_some_aliasing (sym->formal, *ap);
}
/* Check how a procedure pointer component is used against its interface.
If all goes well, the actual argument list will also end up being properly
sorted. Completely analogous to gfc_procedure_use. */
void
gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
{
/* Warn about calls with an implicit interface. Special case
for calling a ISO_C_BINDING becase c_loc and c_funloc
are pseudo-unknown. */
if (gfc_option.warn_implicit_interface
&& comp->attr.if_source == IFSRC_UNKNOWN
&& !comp->attr.is_iso_c)
gfc_warning ("Procedure pointer component '%s' called with an implicit "
"interface at %L", comp->name, where);
if (comp->attr.if_source == IFSRC_UNKNOWN)
{
gfc_actual_arglist *a;
for (a = *ap; a; a = a->next)
{
/* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
if (a->name != NULL && a->name[0] != '%')
{
gfc_error("Keyword argument requires explicit interface "
"for procedure pointer component '%s' at %L",
comp->name, &a->expr->where);
break;
}
}
return;
}
if (!compare_actual_formal (ap, comp->formal, 0, comp->attr.elemental, where))
return;
check_intents (comp->formal, *ap);
if (gfc_option.warn_aliasing)
check_some_aliasing (comp->formal, *ap);
}
/* Try if an actual argument list matches the formal list of a symbol,
respecting the symbol's attributes like ELEMENTAL. This is used for
GENERIC resolution. */
bool
gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
{
bool r;
gcc_assert (sym->attr.flavor == FL_PROCEDURE);
r = !sym->attr.elemental;
if (compare_actual_formal (args, sym->formal, r, !r, NULL))
{
check_intents (sym->formal, *args);
if (gfc_option.warn_aliasing)
check_some_aliasing (sym->formal, *args);
return true;
}
return false;
}
/* Given an interface pointer and an actual argument list, search for
a formal argument list that matches the actual. If found, returns
a pointer to the symbol of the correct interface. Returns NULL if
not found. */
gfc_symbol *
gfc_search_interface (gfc_interface *intr, int sub_flag,
gfc_actual_arglist **ap)
{
gfc_symbol *elem_sym = NULL;
for (; intr; intr = intr->next)
{
if (sub_flag && intr->sym->attr.function)
continue;
if (!sub_flag && intr->sym->attr.subroutine)
continue;
if (gfc_arglist_matches_symbol (ap, intr->sym))
{
/* Satisfy 12.4.4.1 such that an elemental match has lower
weight than a non-elemental match. */
if (intr->sym->attr.elemental)
{
elem_sym = intr->sym;
continue;
}
return intr->sym;
}
}
return elem_sym ? elem_sym : NULL;
}
/* Do a brute force recursive search for a symbol. */
static gfc_symtree *
find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
{
gfc_symtree * st;
if (root->n.sym == sym)
return root;
st = NULL;
if (root->left)
st = find_symtree0 (root->left, sym);
if (root->right && ! st)
st = find_symtree0 (root->right, sym);
return st;
}
/* Find a symtree for a symbol. */
gfc_symtree *
gfc_find_sym_in_symtree (gfc_symbol *sym)
{
gfc_symtree *st;
gfc_namespace *ns;
/* First try to find it by name. */
gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
if (st && st->n.sym == sym)
return st;
/* If it's been renamed, resort to a brute-force search. */
/* TODO: avoid having to do this search. If the symbol doesn't exist
in the symtree for the current namespace, it should probably be added. */
for (ns = gfc_current_ns; ns; ns = ns->parent)
{
st = find_symtree0 (ns->sym_root, sym);
if (st)
return st;
}
gfc_internal_error ("Unable to find symbol %s", sym->name);
/* Not reached. */
}
/* See if the arglist to an operator-call contains a derived-type argument
with a matching type-bound operator. If so, return the matching specific
procedure defined as operator-target as well as the base-object to use
(which is the found derived-type argument with operator). */
static gfc_typebound_proc*
matching_typebound_op (gfc_expr** tb_base,
gfc_actual_arglist* args,
gfc_intrinsic_op op, const char* uop)
{
gfc_actual_arglist* base;
for (base = args; base; base = base->next)
if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
{
gfc_typebound_proc* tb;
gfc_symbol* derived;
gfc_try result;
if (base->expr->ts.type == BT_CLASS)
derived = base->expr->ts.u.derived->components->ts.u.derived;
else
derived = base->expr->ts.u.derived;
if (op == INTRINSIC_USER)
{
gfc_symtree* tb_uop;
gcc_assert (uop);
tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
false, NULL);
if (tb_uop)
tb = tb_uop->n.tb;
else
tb = NULL;
}
else
tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
false, NULL);
/* This means we hit a PRIVATE operator which is use-associated and
should thus not be seen. */
if (result == FAILURE)
tb = NULL;
/* Look through the super-type hierarchy for a matching specific
binding. */
for (; tb; tb = tb->overridden)
{
gfc_tbp_generic* g;
gcc_assert (tb->is_generic);
for (g = tb->u.generic; g; g = g->next)
{
gfc_symbol* target;
gfc_actual_arglist* argcopy;
bool matches;
gcc_assert (g->specific);
if (g->specific->error)
continue;
target = g->specific->u.specific->n.sym;
/* Check if this arglist matches the formal. */
argcopy = gfc_copy_actual_arglist (args);
matches = gfc_arglist_matches_symbol (&argcopy, target);
gfc_free_actual_arglist (argcopy);
/* Return if we found a match. */
if (matches)
{
*tb_base = base->expr;
return g->specific;
}
}
}
}
return NULL;
}
/* For the 'actual arglist' of an operator call and a specific typebound
procedure that has been found the target of a type-bound operator, build the
appropriate EXPR_COMPCALL and resolve it. We take this indirection over
type-bound procedures rather than resolving type-bound operators 'directly'
so that we can reuse the existing logic. */
static void
build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
gfc_expr* base, gfc_typebound_proc* target)
{
e->expr_type = EXPR_COMPCALL;
e->value.compcall.tbp = target;
e->value.compcall.name = "operator"; /* Should not matter. */
e->value.compcall.actual = actual;
e->value.compcall.base_object = base;
e->value.compcall.ignore_pass = 1;
e->value.compcall.assign = 0;
}
/* This subroutine is called when an expression is being resolved.
The expression node in question is either a user defined operator
or an intrinsic operator with arguments that aren't compatible
with the operator. This subroutine builds an actual argument list
corresponding to the operands, then searches for a compatible
interface. If one is found, the expression node is replaced with
the appropriate function call.
real_error is an additional output argument that specifies if FAILURE
is because of some real error and not because no match was found. */
gfc_try
gfc_extend_expr (gfc_expr *e, bool *real_error)
{
gfc_actual_arglist *actual;
gfc_symbol *sym;
gfc_namespace *ns;
gfc_user_op *uop;
gfc_intrinsic_op i;
sym = NULL;
actual = gfc_get_actual_arglist ();
actual->expr = e->value.op.op1;
*real_error = false;
if (e->value.op.op2 != NULL)
{
actual->next = gfc_get_actual_arglist ();
actual->next->expr = e->value.op.op2;
}
i = fold_unary_intrinsic (e->value.op.op);
if (i == INTRINSIC_USER)
{
for (ns = gfc_current_ns; ns; ns = ns->parent)
{
uop = gfc_find_uop (e->value.op.uop->name, ns);
if (uop == NULL)
continue;
sym = gfc_search_interface (uop->op, 0, &actual);
if (sym != NULL)
break;
}
}
else
{
for (ns = gfc_current_ns; ns; ns = ns->parent)
{
/* Due to the distinction between '==' and '.eq.' and friends, one has
to check if either is defined. */
switch (i)
{
#define CHECK_OS_COMPARISON(comp) \
case INTRINSIC_##comp: \
case INTRINSIC_##comp##_OS: \
sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
if (!sym) \
sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
break;
CHECK_OS_COMPARISON(EQ)
CHECK_OS_COMPARISON(NE)
CHECK_OS_COMPARISON(GT)
CHECK_OS_COMPARISON(GE)
CHECK_OS_COMPARISON(LT)
CHECK_OS_COMPARISON(LE)
#undef CHECK_OS_COMPARISON
default:
sym = gfc_search_interface (ns->op[i], 0, &actual);
}
if (sym != NULL)
break;
}
}
/* TODO: Do an ambiguity-check and error if multiple matching interfaces are
found rather than just taking the first one and not checking further. */
if (sym == NULL)
{
gfc_typebound_proc* tbo;
gfc_expr* tb_base;
/* See if we find a matching type-bound operator. */
if (i == INTRINSIC_USER)
tbo = matching_typebound_op (&tb_base, actual,
i, e->value.op.uop->name);
else
switch (i)
{
#define CHECK_OS_COMPARISON(comp) \
case INTRINSIC_##comp: \
case INTRINSIC_##comp##_OS: \
tbo = matching_typebound_op (&tb_base, actual, \
INTRINSIC_##comp, NULL); \
if (!tbo) \
tbo = matching_typebound_op (&tb_base, actual, \
INTRINSIC_##comp##_OS, NULL); \
break;
CHECK_OS_COMPARISON(EQ)
CHECK_OS_COMPARISON(NE)
CHECK_OS_COMPARISON(GT)
CHECK_OS_COMPARISON(GE)
CHECK_OS_COMPARISON(LT)
CHECK_OS_COMPARISON(LE)
#undef CHECK_OS_COMPARISON
default:
tbo = matching_typebound_op (&tb_base, actual, i, NULL);
break;
}
/* If there is a matching typebound-operator, replace the expression with
a call to it and succeed. */
if (tbo)
{
gfc_try result;
gcc_assert (tb_base);
build_compcall_for_operator (e, actual, tb_base, tbo);
result = gfc_resolve_expr (e);
if (result == FAILURE)
*real_error = true;
return result;
}
/* Don't use gfc_free_actual_arglist(). */
if (actual->next != NULL)
gfc_free (actual->next);
gfc_free (actual);
return FAILURE;
}
/* Change the expression node to a function call. */
e->expr_type = EXPR_FUNCTION;
e->symtree = gfc_find_sym_in_symtree (sym);
e->value.function.actual = actual;
e->value.function.esym = NULL;
e->value.function.isym = NULL;
e->value.function.name = NULL;
e->user_operator = 1;
if (gfc_resolve_expr (e) == FAILURE)
{
*real_error = true;
return FAILURE;
}
return SUCCESS;
}
/* Tries to replace an assignment code node with a subroutine call to
the subroutine associated with the assignment operator. Return
SUCCESS if the node was replaced. On FAILURE, no error is
generated. */
gfc_try
gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
{
gfc_actual_arglist *actual;
gfc_expr *lhs, *rhs;
gfc_symbol *sym;
lhs = c->expr1;
rhs = c->expr2;
/* Don't allow an intrinsic assignment to be replaced. */
if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
&& (rhs->rank == 0 || rhs->rank == lhs->rank)
&& (lhs->ts.type == rhs->ts.type
|| (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
return FAILURE;
actual = gfc_get_actual_arglist ();
actual->expr = lhs;
actual->next = gfc_get_actual_arglist ();
actual->next->expr = rhs;
sym = NULL;
for (; ns; ns = ns->parent)
{
sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
if (sym != NULL)
break;
}
/* TODO: Ambiguity-check, see above for gfc_extend_expr. */
if (sym == NULL)
{
gfc_typebound_proc* tbo;
gfc_expr* tb_base;
/* See if we find a matching type-bound assignment. */
tbo = matching_typebound_op (&tb_base, actual,
INTRINSIC_ASSIGN, NULL);
/* If there is one, replace the expression with a call to it and
succeed. */
if (tbo)
{
gcc_assert (tb_base);
c->expr1 = gfc_get_expr ();
build_compcall_for_operator (c->expr1, actual, tb_base, tbo);
c->expr1->value.compcall.assign = 1;
c->expr2 = NULL;
c->op = EXEC_COMPCALL;
/* c is resolved from the caller, so no need to do it here. */
return SUCCESS;
}
gfc_free (actual->next);
gfc_free (actual);
return FAILURE;
}
/* Replace the assignment with the call. */
c->op = EXEC_ASSIGN_CALL;
c->symtree = gfc_find_sym_in_symtree (sym);
c->expr1 = NULL;
c->expr2 = NULL;
c->ext.actual = actual;
return SUCCESS;
}
/* Make sure that the interface just parsed is not already present in
the given interface list. Ambiguity isn't checked yet since module
procedures can be present without interfaces. */
static gfc_try
check_new_interface (gfc_interface *base, gfc_symbol *new_sym)
{
gfc_interface *ip;
for (ip = base; ip; ip = ip->next)
{
if (ip->sym == new_sym)
{
gfc_error ("Entity '%s' at %C is already present in the interface",
new_sym->name);
return FAILURE;
}
}
return SUCCESS;
}
/* Add a symbol to the current interface. */
gfc_try
gfc_add_interface (gfc_symbol *new_sym)
{
gfc_interface **head, *intr;
gfc_namespace *ns;
gfc_symbol *sym;
switch (current_interface.type)
{
case INTERFACE_NAMELESS:
case INTERFACE_ABSTRACT:
return SUCCESS;
case INTERFACE_INTRINSIC_OP:
for (ns = current_interface.ns; ns; ns = ns->parent)
switch (current_interface.op)
{
case INTRINSIC_EQ:
case INTRINSIC_EQ_OS:
if (check_new_interface (ns->op[INTRINSIC_EQ], new_sym) == FAILURE ||
check_new_interface (ns->op[INTRINSIC_EQ_OS], new_sym) == FAILURE)
return FAILURE;
break;
case INTRINSIC_NE:
case INTRINSIC_NE_OS:
if (check_new_interface (ns->op[INTRINSIC_NE], new_sym) == FAILURE ||
check_new_interface (ns->op[INTRINSIC_NE_OS], new_sym) == FAILURE)
return FAILURE;
break;
case INTRINSIC_GT:
case INTRINSIC_GT_OS:
if (check_new_interface (ns->op[INTRINSIC_GT], new_sym) == FAILURE ||
check_new_interface (ns->op[INTRINSIC_GT_OS], new_sym) == FAILURE)
return FAILURE;
break;
case INTRINSIC_GE:
case INTRINSIC_GE_OS:
if (check_new_interface (ns->op[INTRINSIC_GE], new_sym) == FAILURE ||
check_new_interface (ns->op[INTRINSIC_GE_OS], new_sym) == FAILURE)
return FAILURE;
break;
case INTRINSIC_LT:
case INTRINSIC_LT_OS:
if (check_new_interface (ns->op[INTRINSIC_LT], new_sym) == FAILURE ||
check_new_interface (ns->op[INTRINSIC_LT_OS], new_sym) == FAILURE)
return FAILURE;
break;
case INTRINSIC_LE:
case INTRINSIC_LE_OS:
if (check_new_interface (ns->op[INTRINSIC_LE], new_sym) == FAILURE ||
check_new_interface (ns->op[INTRINSIC_LE_OS], new_sym) == FAILURE)
return FAILURE;
break;
default:
if (check_new_interface (ns->op[current_interface.op], new_sym) == FAILURE)
return FAILURE;
}
head = &current_interface.ns->op[current_interface.op];
break;
case INTERFACE_GENERIC:
for (ns = current_interface.ns; ns; ns = ns->parent)
{
gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
if (sym == NULL)
continue;
if (check_new_interface (sym->generic, new_sym) == FAILURE)
return FAILURE;
}
head = &current_interface.sym->generic;
break;
case INTERFACE_USER_OP:
if (check_new_interface (current_interface.uop->op, new_sym)
== FAILURE)
return FAILURE;
head = &current_interface.uop->op;
break;
default:
gfc_internal_error ("gfc_add_interface(): Bad interface type");
}
intr = gfc_get_interface ();
intr->sym = new_sym;
intr->where = gfc_current_locus;
intr->next = *head;
*head = intr;
return SUCCESS;
}
gfc_interface *
gfc_current_interface_head (void)
{
switch (current_interface.type)
{
case INTERFACE_INTRINSIC_OP:
return current_interface.ns->op[current_interface.op];
break;
case INTERFACE_GENERIC:
return current_interface.sym->generic;
break;
case INTERFACE_USER_OP:
return current_interface.uop->op;
break;
default:
gcc_unreachable ();
}
}
void
gfc_set_current_interface_head (gfc_interface *i)
{
switch (current_interface.type)
{
case INTERFACE_INTRINSIC_OP:
current_interface.ns->op[current_interface.op] = i;
break;
case INTERFACE_GENERIC:
current_interface.sym->generic = i;
break;
case INTERFACE_USER_OP:
current_interface.uop->op = i;
break;
default:
gcc_unreachable ();
}
}
/* Gets rid of a formal argument list. We do not free symbols.
Symbols are freed when a namespace is freed. */
void
gfc_free_formal_arglist (gfc_formal_arglist *p)
{
gfc_formal_arglist *q;
for (; p; p = q)
{
q = p->next;
gfc_free (p);
}
}