rt_gccstream/gcc/ada/s-rannum.adb

535 lines
19 KiB
Ada

------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . R A N D O M _ N U M B E R S --
-- --
-- B o d y --
-- --
-- Copyright (C) 2007,2009 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- --
-- The implementation here is derived from a C-program for MT19937, with --
-- initialization improved 2002/1/26. As required, the following notice is --
-- copied from the original program. --
-- --
-- Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, --
-- All rights reserved. --
-- --
-- Redistribution and use in source and binary forms, with or without --
-- modification, are permitted provided that the following conditions --
-- are met: --
-- --
-- 1. Redistributions of source code must retain the above copyright --
-- notice, this list of conditions and the following disclaimer. --
-- --
-- 2. Redistributions in binary form must reproduce the above copyright --
-- notice, this list of conditions and the following disclaimer in the --
-- documentation and/or other materials provided with the distribution.--
-- --
-- 3. The names of its contributors may not be used to endorse or promote --
-- products derived from this software without specific prior written --
-- permission. --
-- --
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS --
-- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT --
-- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR --
-- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT --
-- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, --
-- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED --
-- TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --
-- --
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- --
-- This is an implementation of the Mersenne Twister, twisted generalized --
-- feedback shift register of rational normal form, with state-bit --
-- reflection and tempering. This version generates 32-bit integers with a --
-- period of 2**19937 - 1 (a Mersenne prime, hence the name). For --
-- applications requiring more than 32 bits (up to 64), we concatenate two --
-- 32-bit numbers. --
-- --
-- See http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html for --
-- details. --
-- --
-- In contrast to the original code, we do not generate random numbers in --
-- batches of N. Measurement seems to show this has very little if any --
-- effect on performance, and it may be marginally better for real-time --
-- applications with hard deadlines. --
-- --
------------------------------------------------------------------------------
with Ada.Calendar; use Ada.Calendar;
with Ada.Unchecked_Conversion;
with Interfaces; use Interfaces;
use Ada;
package body System.Random_Numbers is
-------------------------
-- Implementation Note --
-------------------------
-- The design of this spec is very awkward, as a result of Ada 95 not
-- permitting in-out parameters for function formals (most naturally,
-- Generator values would be passed this way). In pure Ada 95, the only
-- solution is to use the heap and pointers, and, to avoid memory leaks,
-- controlled types.
-- This is awfully heavy, so what we do is to use Unrestricted_Access to
-- get a pointer to the state in the passed Generator. This works because
-- Generator is a limited type and will thus always be passed by reference.
Low31_Mask : constant := 2**31-1;
Bit31_Mask : constant := 2**31;
Matrix_A_X : constant array (State_Val range 0 .. 1) of State_Val :=
(0, 16#9908b0df#);
Y2K : constant Calendar.Time :=
Calendar.Time_Of
(Year => 2000, Month => 1, Day => 1, Seconds => 0.0);
-- First Year 2000 day
subtype Image_String is String (1 .. Max_Image_Width);
-- Utility functions
procedure Init (Gen : out Generator; Initiator : Unsigned_32);
-- Perform a default initialization of the state of Gen. The resulting
-- state is identical for identical values of Initiator.
procedure Insert_Image
(S : in out Image_String;
Index : Integer;
V : State_Val);
-- Insert image of V into S, in the Index'th 11-character substring
function Extract_Value (S : String; Index : Integer) return State_Val;
-- Treat S as a sequence of 11-character decimal numerals and return
-- the result of converting numeral #Index (numbering from 0)
function To_Unsigned is
new Unchecked_Conversion (Integer_32, Unsigned_32);
function To_Unsigned is
new Unchecked_Conversion (Integer_64, Unsigned_64);
------------
-- Random --
------------
function Random (Gen : Generator) return Unsigned_32 is
G : Generator renames Gen'Unrestricted_Access.all;
Y : State_Val;
I : Integer;
begin
I := G.I;
if I < N - M then
Y := (G.S (I) and Bit31_Mask) or (G.S (I + 1) and Low31_Mask);
Y := G.S (I + M) xor Shift_Right (Y, 1) xor Matrix_A_X (Y and 1);
I := I + 1;
elsif I < N - 1 then
Y := (G.S (I) and Bit31_Mask) or (G.S (I + 1) and Low31_Mask);
Y := G.S (I + (M - N))
xor Shift_Right (Y, 1)
xor Matrix_A_X (Y and 1);
I := I + 1;
elsif I = N - 1 then
Y := (G.S (I) and Bit31_Mask) or (G.S (0) and Low31_Mask);
Y := G.S (M - 1) xor Shift_Right (Y, 1) xor Matrix_A_X (Y and 1);
I := 0;
else
Init (G, 5489);
return Random (Gen);
end if;
G.S (G.I) := Y;
G.I := I;
Y := Y xor Shift_Right (Y, 11);
Y := Y xor (Shift_Left (Y, 7) and 16#9d2c5680#);
Y := Y xor (Shift_Left (Y, 15) and 16#efc60000#);
Y := Y xor Shift_Right (Y, 18);
return Y;
end Random;
function Random (Gen : Generator) return Float is
-- Note: The application of Float'Machine (...) is necessary to avoid
-- returning extra significand bits. Without it, the function's value
-- will change if it is spilled, for example, causing
-- gratuitous nondeterminism.
Result : constant Float :=
Float'Machine
(Float (Unsigned_32'(Random (Gen))) * 2.0 ** (-32));
begin
if Result < 1.0 then
return Result;
else
return Float'Adjacent (1.0, 0.0);
end if;
end Random;
function Random (Gen : Generator) return Long_Float is
Result : constant Long_Float :=
Long_Float'Machine ((Long_Float (Unsigned_32'(Random (Gen)))
* 2.0 ** (-32))
+ (Long_Float (Unsigned_32'(Random (Gen))) * 2.0 ** (-64)));
begin
if Result < 1.0 then
return Result;
else
return Long_Float'Adjacent (1.0, 0.0);
end if;
end Random;
function Random (Gen : Generator) return Unsigned_64 is
begin
return Shift_Left (Unsigned_64 (Unsigned_32'(Random (Gen))), 32)
or Unsigned_64 (Unsigned_32'(Random (Gen)));
end Random;
---------------------
-- Random_Discrete --
---------------------
function Random_Discrete
(Gen : Generator;
Min : Result_Subtype := Default_Min;
Max : Result_Subtype := Result_Subtype'Last) return Result_Subtype
is
begin
if Max = Min then
return Max;
elsif Max < Min then
raise Constraint_Error;
elsif Result_Subtype'Base'Size > 32 then
declare
-- In the 64-bit case, we have to be careful, since not all 64-bit
-- unsigned values are representable in GNAT's root_integer type.
-- Ignore different-size warnings here; since GNAT's handling
-- is correct.
pragma Warnings ("Z");
function Conv_To_Unsigned is
new Unchecked_Conversion (Result_Subtype'Base, Unsigned_64);
function Conv_To_Result is
new Unchecked_Conversion (Unsigned_64, Result_Subtype'Base);
pragma Warnings ("z");
N : constant Unsigned_64 :=
Conv_To_Unsigned (Max) - Conv_To_Unsigned (Min) + 1;
X, Slop : Unsigned_64;
begin
if N = 0 then
return Conv_To_Result (Conv_To_Unsigned (Min) + Random (Gen));
else
Slop := Unsigned_64'Last rem N + 1;
loop
X := Random (Gen);
exit when Slop = N or else X <= Unsigned_64'Last - Slop;
end loop;
return Conv_To_Result (Conv_To_Unsigned (Min) + X rem N);
end if;
end;
elsif Result_Subtype'Pos (Max) - Result_Subtype'Pos (Min) =
2 ** 32 - 1
then
return Result_Subtype'Val
(Result_Subtype'Pos (Min) + Unsigned_32'Pos (Random (Gen)));
else
declare
N : constant Unsigned_32 :=
Unsigned_32 (Result_Subtype'Pos (Max) -
Result_Subtype'Pos (Min) + 1);
Slop : constant Unsigned_32 := Unsigned_32'Last rem N + 1;
X : Unsigned_32;
begin
loop
X := Random (Gen);
exit when Slop = N or else X <= Unsigned_32'Last - Slop;
end loop;
return
Result_Subtype'Val
(Result_Subtype'Pos (Min) + Unsigned_32'Pos (X rem N));
end;
end if;
end Random_Discrete;
------------------
-- Random_Float --
------------------
function Random_Float (Gen : Generator) return Result_Subtype is
begin
if Result_Subtype'Base'Digits > Float'Digits then
return Result_Subtype'Machine (Result_Subtype
(Long_Float'(Random (Gen))));
else
return Result_Subtype'Machine (Result_Subtype
(Float'(Random (Gen))));
end if;
end Random_Float;
-----------
-- Reset --
-----------
procedure Reset (Gen : out Generator) is
X : constant Unsigned_32 := Unsigned_32 ((Calendar.Clock - Y2K) * 64.0);
begin
Init (Gen, X);
end Reset;
procedure Reset (Gen : out Generator; Initiator : Integer_32) is
begin
Init (Gen, To_Unsigned (Initiator));
end Reset;
procedure Reset (Gen : out Generator; Initiator : Unsigned_32) is
begin
Init (Gen, Initiator);
end Reset;
procedure Reset (Gen : out Generator; Initiator : Integer) is
begin
pragma Warnings ("C");
-- This is probably an unnecessary precaution against future change, but
-- since the test is a static expression, no extra code is involved.
if Integer'Size <= 32 then
Init (Gen, To_Unsigned (Integer_32 (Initiator)));
else
declare
Initiator1 : constant Unsigned_64 :=
To_Unsigned (Integer_64 (Initiator));
Init0 : constant Unsigned_32 :=
Unsigned_32 (Initiator1 mod 2 ** 32);
Init1 : constant Unsigned_32 :=
Unsigned_32 (Shift_Right (Initiator1, 32));
begin
Reset (Gen, Initialization_Vector'(Init0, Init1));
end;
end if;
pragma Warnings ("c");
end Reset;
procedure Reset (Gen : out Generator; Initiator : Initialization_Vector) is
I, J : Integer;
begin
Init (Gen, 19650218);
I := 1;
J := 0;
if Initiator'Length > 0 then
for K in reverse 1 .. Integer'Max (N, Initiator'Length) loop
Gen.S (I) :=
(Gen.S (I)
xor ((Gen.S (I - 1) xor Shift_Right (Gen.S (I - 1), 30))
* 1664525))
+ Initiator (J + Initiator'First) + Unsigned_32 (J);
I := I + 1;
J := J + 1;
if I >= N then
Gen.S (0) := Gen.S (N - 1);
I := 1;
end if;
if J >= Initiator'Length then
J := 0;
end if;
end loop;
end if;
for K in reverse 1 .. N - 1 loop
Gen.S (I) :=
(Gen.S (I) xor ((Gen.S (I - 1)
xor Shift_Right (Gen.S (I - 1), 30)) * 1566083941))
- Unsigned_32 (I);
I := I + 1;
if I >= N then
Gen.S (0) := Gen.S (N - 1);
I := 1;
end if;
end loop;
Gen.S (0) := Bit31_Mask;
end Reset;
procedure Reset (Gen : out Generator; From_State : Generator) is
begin
Gen.S := From_State.S;
Gen.I := From_State.I;
end Reset;
procedure Reset (Gen : out Generator; From_State : State) is
begin
Gen.I := 0;
Gen.S := From_State;
end Reset;
procedure Reset (Gen : out Generator; From_Image : String) is
begin
Gen.I := 0;
for J in 0 .. N - 1 loop
Gen.S (J) := Extract_Value (From_Image, J);
end loop;
end Reset;
----------
-- Save --
----------
procedure Save (Gen : Generator; To_State : out State) is
Gen2 : Generator;
begin
if Gen.I = N then
Init (Gen2, 5489);
To_State := Gen2.S;
else
To_State (0 .. N - 1 - Gen.I) := Gen.S (Gen.I .. N - 1);
To_State (N - Gen.I .. N - 1) := Gen.S (0 .. Gen.I - 1);
end if;
end Save;
-----------
-- Image --
-----------
function Image (Of_State : State) return String is
Result : Image_String;
begin
Result := (others => ' ');
for J in Of_State'Range loop
Insert_Image (Result, J, Of_State (J));
end loop;
return Result;
end Image;
function Image (Gen : Generator) return String is
Result : Image_String;
begin
Result := (others => ' ');
for J in 0 .. N - 1 loop
Insert_Image (Result, J, Gen.S ((J + Gen.I) mod N));
end loop;
return Result;
end Image;
-----------
-- Value --
-----------
function Value (Coded_State : String) return State is
Gen : Generator;
S : State;
begin
Reset (Gen, Coded_State);
Save (Gen, S);
return S;
end Value;
----------
-- Init --
----------
procedure Init (Gen : out Generator; Initiator : Unsigned_32) is
begin
Gen.S (0) := Initiator;
for I in 1 .. N - 1 loop
Gen.S (I) :=
1812433253
* (Gen.S (I - 1) xor Shift_Right (Gen.S (I - 1), 30))
+ Unsigned_32 (I);
end loop;
Gen.I := 0;
end Init;
------------------
-- Insert_Image --
------------------
procedure Insert_Image
(S : in out Image_String;
Index : Integer;
V : State_Val)
is
Value : constant String := State_Val'Image (V);
begin
S (Index * 11 + 1 .. Index * 11 + Value'Length) := Value;
end Insert_Image;
-------------------
-- Extract_Value --
-------------------
function Extract_Value (S : String; Index : Integer) return State_Val is
begin
return State_Val'Value (S (S'First + Index * 11 ..
S'First + Index * 11 + 11));
end Extract_Value;
end System.Random_Numbers;