/* Generic implementation of the UNPACK intrinsic Copyright 2002, 2003, 2004, 2005, 2007, 2009 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. Ligbfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Under Section 7 of GPL version 3, you are granted additional permissions described in the GCC Runtime Library Exception, version 3.1, as published by the Free Software Foundation. You should have received a copy of the GNU General Public License and a copy of the GCC Runtime Library Exception along with this program; see the files COPYING3 and COPYING.RUNTIME respectively. If not, see . */ #include "libgfortran.h" #include #include #include /* All the bounds checking for unpack in one function. If field is NULL, we don't check it, for the unpack0 functions. */ static void unpack_bounds (gfc_array_char *ret, const gfc_array_char *vector, const gfc_array_l1 *mask, const gfc_array_char *field) { index_type vec_size, mask_count; vec_size = size0 ((array_t *) vector); mask_count = count_0 (mask); if (vec_size < mask_count) runtime_error ("Incorrect size of return value in UNPACK" " intrinsic: should be at least %ld, is" " %ld", (long int) mask_count, (long int) vec_size); if (field != NULL) bounds_equal_extents ((array_t *) field, (array_t *) mask, "FIELD", "UNPACK"); if (ret->data != NULL) bounds_equal_extents ((array_t *) ret, (array_t *) mask, "return value", "UNPACK"); } static void unpack_internal (gfc_array_char *ret, const gfc_array_char *vector, const gfc_array_l1 *mask, const gfc_array_char *field, index_type size) { /* r.* indicates the return array. */ index_type rstride[GFC_MAX_DIMENSIONS]; index_type rstride0; index_type rs; char * restrict rptr; /* v.* indicates the vector array. */ index_type vstride0; char *vptr; /* f.* indicates the field array. */ index_type fstride[GFC_MAX_DIMENSIONS]; index_type fstride0; const char *fptr; /* m.* indicates the mask array. */ index_type mstride[GFC_MAX_DIMENSIONS]; index_type mstride0; const GFC_LOGICAL_1 *mptr; index_type count[GFC_MAX_DIMENSIONS]; index_type extent[GFC_MAX_DIMENSIONS]; index_type n; index_type dim; int empty; int mask_kind; empty = 0; mptr = mask->data; /* Use the same loop for all logical types, by using GFC_LOGICAL_1 and using shifting to address size and endian issues. */ mask_kind = GFC_DESCRIPTOR_SIZE (mask); if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 #ifdef HAVE_GFC_LOGICAL_16 || mask_kind == 16 #endif ) { /* Don't convert a NULL pointer as we use test for NULL below. */ if (mptr) mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); } else runtime_error ("Funny sized logical array"); if (ret->data == NULL) { /* The front end has signalled that we need to populate the return array descriptor. */ dim = GFC_DESCRIPTOR_RANK (mask); rs = 1; for (n = 0; n < dim; n++) { count[n] = 0; GFC_DIMENSION_SET(ret->dim[n], 0, GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs); extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); empty = empty || extent[n] <= 0; rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret, n); fstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(field, n); mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n); rs *= extent[n]; } ret->offset = 0; ret->data = internal_malloc_size (rs * size); } else { dim = GFC_DESCRIPTOR_RANK (ret); for (n = 0; n < dim; n++) { count[n] = 0; extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n); empty = empty || extent[n] <= 0; rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret, n); fstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(field, n); mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n); } } if (empty) return; vstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0); rstride0 = rstride[0]; fstride0 = fstride[0]; mstride0 = mstride[0]; rptr = ret->data; fptr = field->data; vptr = vector->data; while (rptr) { if (*mptr) { /* From vector. */ memcpy (rptr, vptr, size); vptr += vstride0; } else { /* From field. */ memcpy (rptr, fptr, size); } /* Advance to the next element. */ rptr += rstride0; fptr += fstride0; mptr += mstride0; count[0]++; n = 0; while (count[n] == extent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ count[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ rptr -= rstride[n] * extent[n]; fptr -= fstride[n] * extent[n]; mptr -= mstride[n] * extent[n]; n++; if (n >= dim) { /* Break out of the loop. */ rptr = NULL; break; } else { count[n]++; rptr += rstride[n]; fptr += fstride[n]; mptr += mstride[n]; } } } } extern void unpack1 (gfc_array_char *, const gfc_array_char *, const gfc_array_l1 *, const gfc_array_char *); export_proto(unpack1); void unpack1 (gfc_array_char *ret, const gfc_array_char *vector, const gfc_array_l1 *mask, const gfc_array_char *field) { index_type type_size; index_type size; if (unlikely(compile_options.bounds_check)) unpack_bounds (ret, vector, mask, field); type_size = GFC_DTYPE_TYPE_SIZE (vector); size = GFC_DESCRIPTOR_SIZE (vector); switch(type_size) { case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_INTEGER_1: case GFC_DTYPE_DERIVED_1: unpack1_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector, mask, (gfc_array_i1 *) field); return; case GFC_DTYPE_LOGICAL_2: case GFC_DTYPE_INTEGER_2: unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, mask, (gfc_array_i2 *) field); return; case GFC_DTYPE_LOGICAL_4: case GFC_DTYPE_INTEGER_4: unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, mask, (gfc_array_i4 *) field); return; case GFC_DTYPE_LOGICAL_8: case GFC_DTYPE_INTEGER_8: unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, mask, (gfc_array_i8 *) field); return; #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_LOGICAL_16: case GFC_DTYPE_INTEGER_16: unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, mask, (gfc_array_i16 *) field); return; #endif case GFC_DTYPE_REAL_4: unpack1_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector, mask, (gfc_array_r4 *) field); return; case GFC_DTYPE_REAL_8: unpack1_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) vector, mask, (gfc_array_r8 *) field); return; #ifdef HAVE_GFC_REAL_10 case GFC_DTYPE_REAL_10: unpack1_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector, mask, (gfc_array_r10 *) field); return; #endif #ifdef HAVE_GFC_REAL_16 case GFC_DTYPE_REAL_16: unpack1_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector, mask, (gfc_array_r16 *) field); return; #endif case GFC_DTYPE_COMPLEX_4: unpack1_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector, mask, (gfc_array_c4 *) field); return; case GFC_DTYPE_COMPLEX_8: unpack1_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector, mask, (gfc_array_c8 *) field); return; #ifdef HAVE_GFC_COMPLEX_10 case GFC_DTYPE_COMPLEX_10: unpack1_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector, mask, (gfc_array_c10 *) field); return; #endif #ifdef HAVE_GFC_COMPLEX_16 case GFC_DTYPE_COMPLEX_16: unpack1_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector, mask, (gfc_array_c16 *) field); return; #endif case GFC_DTYPE_DERIVED_2: if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(vector->data) || GFC_UNALIGNED_2(field->data)) break; else { unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, mask, (gfc_array_i2 *) field); return; } case GFC_DTYPE_DERIVED_4: if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(vector->data) || GFC_UNALIGNED_4(field->data)) break; else { unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, mask, (gfc_array_i4 *) field); return; } case GFC_DTYPE_DERIVED_8: if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(vector->data) || GFC_UNALIGNED_8(field->data)) break; else { unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, mask, (gfc_array_i8 *) field); return; } #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_DERIVED_16: if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(vector->data) || GFC_UNALIGNED_16(field->data)) break; else { unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, mask, (gfc_array_i16 *) field); return; } #endif } unpack_internal (ret, vector, mask, field, size); } extern void unpack1_char (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *, const gfc_array_l1 *, const gfc_array_char *, GFC_INTEGER_4, GFC_INTEGER_4); export_proto(unpack1_char); void unpack1_char (gfc_array_char *ret, GFC_INTEGER_4 ret_length __attribute__((unused)), const gfc_array_char *vector, const gfc_array_l1 *mask, const gfc_array_char *field, GFC_INTEGER_4 vector_length, GFC_INTEGER_4 field_length __attribute__((unused))) { if (unlikely(compile_options.bounds_check)) unpack_bounds (ret, vector, mask, field); unpack_internal (ret, vector, mask, field, vector_length); } extern void unpack1_char4 (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *, const gfc_array_l1 *, const gfc_array_char *, GFC_INTEGER_4, GFC_INTEGER_4); export_proto(unpack1_char4); void unpack1_char4 (gfc_array_char *ret, GFC_INTEGER_4 ret_length __attribute__((unused)), const gfc_array_char *vector, const gfc_array_l1 *mask, const gfc_array_char *field, GFC_INTEGER_4 vector_length, GFC_INTEGER_4 field_length __attribute__((unused))) { if (unlikely(compile_options.bounds_check)) unpack_bounds (ret, vector, mask, field); unpack_internal (ret, vector, mask, field, vector_length * sizeof (gfc_char4_t)); } extern void unpack0 (gfc_array_char *, const gfc_array_char *, const gfc_array_l1 *, char *); export_proto(unpack0); void unpack0 (gfc_array_char *ret, const gfc_array_char *vector, const gfc_array_l1 *mask, char *field) { gfc_array_char tmp; index_type type_size; if (unlikely(compile_options.bounds_check)) unpack_bounds (ret, vector, mask, NULL); type_size = GFC_DTYPE_TYPE_SIZE (vector); switch (type_size) { case GFC_DTYPE_LOGICAL_1: case GFC_DTYPE_INTEGER_1: case GFC_DTYPE_DERIVED_1: unpack0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector, mask, (GFC_INTEGER_1 *) field); return; case GFC_DTYPE_LOGICAL_2: case GFC_DTYPE_INTEGER_2: unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, mask, (GFC_INTEGER_2 *) field); return; case GFC_DTYPE_LOGICAL_4: case GFC_DTYPE_INTEGER_4: unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, mask, (GFC_INTEGER_4 *) field); return; case GFC_DTYPE_LOGICAL_8: case GFC_DTYPE_INTEGER_8: unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, mask, (GFC_INTEGER_8 *) field); return; #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_LOGICAL_16: case GFC_DTYPE_INTEGER_16: unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, mask, (GFC_INTEGER_16 *) field); return; #endif case GFC_DTYPE_REAL_4: unpack0_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector, mask, (GFC_REAL_4 *) field); return; case GFC_DTYPE_REAL_8: unpack0_r8 ((gfc_array_r8 *) ret, (gfc_array_r8*) vector, mask, (GFC_REAL_8 *) field); return; #ifdef HAVE_GFC_REAL_10 case GFC_DTYPE_REAL_10: unpack0_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector, mask, (GFC_REAL_10 *) field); return; #endif #ifdef HAVE_GFC_REAL_16 case GFC_DTYPE_REAL_16: unpack0_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector, mask, (GFC_REAL_16 *) field); return; #endif case GFC_DTYPE_COMPLEX_4: unpack0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector, mask, (GFC_COMPLEX_4 *) field); return; case GFC_DTYPE_COMPLEX_8: unpack0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector, mask, (GFC_COMPLEX_8 *) field); return; #ifdef HAVE_GFC_COMPLEX_10 case GFC_DTYPE_COMPLEX_10: unpack0_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector, mask, (GFC_COMPLEX_10 *) field); return; #endif #ifdef HAVE_GFC_COMPLEX_16 case GFC_DTYPE_COMPLEX_16: unpack0_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector, mask, (GFC_COMPLEX_16 *) field); return; #endif case GFC_DTYPE_DERIVED_2: if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(vector->data) || GFC_UNALIGNED_2(field)) break; else { unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector, mask, (GFC_INTEGER_2 *) field); return; } case GFC_DTYPE_DERIVED_4: if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(vector->data) || GFC_UNALIGNED_4(field)) break; else { unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector, mask, (GFC_INTEGER_4 *) field); return; } case GFC_DTYPE_DERIVED_8: if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(vector->data) || GFC_UNALIGNED_8(field)) break; else { unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector, mask, (GFC_INTEGER_8 *) field); return; } #ifdef HAVE_GFC_INTEGER_16 case GFC_DTYPE_DERIVED_16: if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(vector->data) || GFC_UNALIGNED_16(field)) break; else { unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector, mask, (GFC_INTEGER_16 *) field); return; } #endif } memset (&tmp, 0, sizeof (tmp)); tmp.dtype = 0; tmp.data = field; unpack_internal (ret, vector, mask, &tmp, GFC_DESCRIPTOR_SIZE (vector)); } extern void unpack0_char (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *, const gfc_array_l1 *, char *, GFC_INTEGER_4, GFC_INTEGER_4); export_proto(unpack0_char); void unpack0_char (gfc_array_char *ret, GFC_INTEGER_4 ret_length __attribute__((unused)), const gfc_array_char *vector, const gfc_array_l1 *mask, char *field, GFC_INTEGER_4 vector_length, GFC_INTEGER_4 field_length __attribute__((unused))) { gfc_array_char tmp; if (unlikely(compile_options.bounds_check)) unpack_bounds (ret, vector, mask, NULL); memset (&tmp, 0, sizeof (tmp)); tmp.dtype = 0; tmp.data = field; unpack_internal (ret, vector, mask, &tmp, vector_length); } extern void unpack0_char4 (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *, const gfc_array_l1 *, char *, GFC_INTEGER_4, GFC_INTEGER_4); export_proto(unpack0_char4); void unpack0_char4 (gfc_array_char *ret, GFC_INTEGER_4 ret_length __attribute__((unused)), const gfc_array_char *vector, const gfc_array_l1 *mask, char *field, GFC_INTEGER_4 vector_length, GFC_INTEGER_4 field_length __attribute__((unused))) { gfc_array_char tmp; if (unlikely(compile_options.bounds_check)) unpack_bounds (ret, vector, mask, NULL); memset (&tmp, 0, sizeof (tmp)); tmp.dtype = 0; tmp.data = field; unpack_internal (ret, vector, mask, &tmp, vector_length * sizeof (gfc_char4_t)); }