/* ----------------------------------------------------------------------- ffi.c - Copyright (c) 1996, 1998, 1999, 2001, 2007, 2008 Red Hat, Inc. Copyright (c) 2002 Ranjit Mathew Copyright (c) 2002 Bo Thorsen Copyright (c) 2002 Roger Sayle Copyright (C) 2008 Free Software Foundation, Inc. x86 Foreign Function Interface Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the ``Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ----------------------------------------------------------------------- */ #if !defined(__x86_64__) || defined(_WIN64) #ifdef _WIN64 #include #endif #include #include #include /* ffi_prep_args is called by the assembly routine once stack space has been allocated for the function's arguments */ void ffi_prep_args(char *stack, extended_cif *ecif) { register unsigned int i; register void **p_argv; register char *argp; register ffi_type **p_arg; argp = stack; if (ecif->cif->flags == FFI_TYPE_STRUCT #ifdef X86_WIN64 && (ecif->cif->rtype->size != 1 && ecif->cif->rtype->size != 2 && ecif->cif->rtype->size != 4 && ecif->cif->rtype->size != 8) #endif ) { *(void **) argp = ecif->rvalue; argp += sizeof(void*); } p_argv = ecif->avalue; for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types; i != 0; i--, p_arg++) { size_t z; /* Align if necessary */ if ((sizeof(void*) - 1) & (size_t) argp) argp = (char *) ALIGN(argp, sizeof(void*)); z = (*p_arg)->size; #ifdef X86_WIN64 if (z > sizeof(ffi_arg) || ((*p_arg)->type == FFI_TYPE_STRUCT && (z != 1 && z != 2 && z != 4 && z != 8)) #if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE || ((*p_arg)->type == FFI_TYPE_LONGDOUBLE) #endif ) { z = sizeof(ffi_arg); *(void **)argp = *p_argv; } else if ((*p_arg)->type == FFI_TYPE_FLOAT) { memcpy(argp, *p_argv, z); } else #endif if (z < sizeof(ffi_arg)) { z = sizeof(ffi_arg); switch ((*p_arg)->type) { case FFI_TYPE_SINT8: *(ffi_sarg *) argp = (ffi_sarg)*(SINT8 *)(* p_argv); break; case FFI_TYPE_UINT8: *(ffi_arg *) argp = (ffi_arg)*(UINT8 *)(* p_argv); break; case FFI_TYPE_SINT16: *(ffi_sarg *) argp = (ffi_sarg)*(SINT16 *)(* p_argv); break; case FFI_TYPE_UINT16: *(ffi_arg *) argp = (ffi_arg)*(UINT16 *)(* p_argv); break; case FFI_TYPE_SINT32: *(ffi_sarg *) argp = (ffi_sarg)*(SINT32 *)(* p_argv); break; case FFI_TYPE_UINT32: *(ffi_arg *) argp = (ffi_arg)*(UINT32 *)(* p_argv); break; case FFI_TYPE_STRUCT: *(ffi_arg *) argp = *(ffi_arg *)(* p_argv); break; default: FFI_ASSERT(0); } } else { memcpy(argp, *p_argv, z); } p_argv++; #ifdef X86_WIN64 argp += (z + sizeof(void*) - 1) & ~(sizeof(void*) - 1); #else argp += z; #endif } return; } /* Perform machine dependent cif processing */ ffi_status ffi_prep_cif_machdep(ffi_cif *cif) { /* Set the return type flag */ switch (cif->rtype->type) { case FFI_TYPE_VOID: #ifdef X86 case FFI_TYPE_STRUCT: #endif #if defined(X86) || defined (X86_WIN32) || defined(X86_FREEBSD) || defined(X86_DARWIN) || defined(X86_WIN64) case FFI_TYPE_UINT8: case FFI_TYPE_UINT16: case FFI_TYPE_SINT8: case FFI_TYPE_SINT16: #endif #ifdef X86_WIN64 case FFI_TYPE_UINT32: case FFI_TYPE_SINT32: #endif case FFI_TYPE_SINT64: case FFI_TYPE_FLOAT: case FFI_TYPE_DOUBLE: #ifndef X86_WIN64 #if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE case FFI_TYPE_LONGDOUBLE: #endif #endif cif->flags = (unsigned) cif->rtype->type; break; case FFI_TYPE_UINT64: #ifdef X86_WIN64 case FFI_TYPE_POINTER: #endif cif->flags = FFI_TYPE_SINT64; break; #ifndef X86 case FFI_TYPE_STRUCT: if (cif->rtype->size == 1) { cif->flags = FFI_TYPE_SMALL_STRUCT_1B; /* same as char size */ } else if (cif->rtype->size == 2) { cif->flags = FFI_TYPE_SMALL_STRUCT_2B; /* same as short size */ } else if (cif->rtype->size == 4) { #ifdef X86_WIN64 cif->flags = FFI_TYPE_SMALL_STRUCT_4B; #else cif->flags = FFI_TYPE_INT; /* same as int type */ #endif } else if (cif->rtype->size == 8) { cif->flags = FFI_TYPE_SINT64; /* same as int64 type */ } else { cif->flags = FFI_TYPE_STRUCT; #ifdef X86_WIN64 // allocate space for return value pointer cif->bytes += ALIGN(sizeof(void*), FFI_SIZEOF_ARG); #endif } break; #endif default: #ifdef X86_WIN64 cif->flags = FFI_TYPE_SINT64; break; case FFI_TYPE_INT: cif->flags = FFI_TYPE_SINT32; #else cif->flags = FFI_TYPE_INT; #endif break; } #ifdef X86_DARWIN cif->bytes = (cif->bytes + 15) & ~0xF; #endif #ifdef X86_WIN64 { unsigned int i; ffi_type **ptr; for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++) { if (((*ptr)->alignment - 1) & cif->bytes) cif->bytes = ALIGN(cif->bytes, (*ptr)->alignment); cif->bytes += ALIGN((*ptr)->size, FFI_SIZEOF_ARG); } } // ensure space for storing four registers cif->bytes += 4 * sizeof(ffi_arg); #endif return FFI_OK; } extern void ffi_call_SYSV(void (*)(char *, extended_cif *), extended_cif *, unsigned, unsigned, unsigned *, void (*fn)(void)); #ifdef X86_WIN32 extern void ffi_call_STDCALL(void (*)(char *, extended_cif *), extended_cif *, unsigned, unsigned, unsigned *, void (*fn)(void)); #endif /* X86_WIN32 */ #ifdef X86_WIN64 extern int ffi_call_win64(void (*)(char *, extended_cif *), extended_cif *, unsigned, unsigned, unsigned *, void (*fn)(void)); #endif void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue) { extended_cif ecif; ecif.cif = cif; ecif.avalue = avalue; /* If the return value is a struct and we don't have a return */ /* value address then we need to make one */ #ifdef X86_WIN64 if (rvalue == NULL && cif->flags == FFI_TYPE_STRUCT && cif->rtype->size != 1 && cif->rtype->size != 2 && cif->rtype->size != 4 && cif->rtype->size != 8) { ecif.rvalue = alloca((cif->rtype->size + 0xF) & ~0xF); } #else if (rvalue == NULL && cif->flags == FFI_TYPE_STRUCT) { ecif.rvalue = alloca(cif->rtype->size); } #endif else ecif.rvalue = rvalue; switch (cif->abi) { #ifdef X86_WIN64 case FFI_WIN64: { // Make copies of all struct arguments // NOTE: not sure if responsibility should be here or in caller unsigned int i; for (i=0; i < cif->nargs;i++) { size_t size = cif->arg_types[i]->size; if ((cif->arg_types[i]->type == FFI_TYPE_STRUCT && (size != 1 && size != 2 && size != 4 && size != 8)) #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE || cif->arg_types[i]->type == FFI_TYPE_LONGDOUBLE #endif ) { void *local = alloca(size); memcpy(local, avalue[i], size); avalue[i] = local; } } ffi_call_win64(ffi_prep_args, &ecif, cif->bytes, cif->flags, ecif.rvalue, fn); } break; #else case FFI_SYSV: ffi_call_SYSV(ffi_prep_args, &ecif, cif->bytes, cif->flags, ecif.rvalue, fn); break; #ifdef X86_WIN32 case FFI_STDCALL: ffi_call_STDCALL(ffi_prep_args, &ecif, cif->bytes, cif->flags, ecif.rvalue, fn); break; #endif /* X86_WIN32 */ #endif /* X86_WIN64 */ default: FFI_ASSERT(0); break; } } /** private members **/ static void ffi_prep_incoming_args_SYSV (char *stack, void **ret, void** args, ffi_cif* cif); void FFI_HIDDEN ffi_closure_SYSV (ffi_closure *) __attribute__ ((regparm(1))); unsigned int FFI_HIDDEN ffi_closure_SYSV_inner (ffi_closure *, void **, void *) __attribute__ ((regparm(1))); void FFI_HIDDEN ffi_closure_raw_SYSV (ffi_raw_closure *) __attribute__ ((regparm(1))); #ifdef X86_WIN32 void FFI_HIDDEN ffi_closure_STDCALL (ffi_closure *) __attribute__ ((regparm(1))); #endif #ifdef X86_WIN64 void FFI_HIDDEN ffi_closure_win64 (ffi_closure *); #endif /* This function is jumped to by the trampoline */ #ifdef X86_WIN64 void * FFI_HIDDEN ffi_closure_win64_inner (ffi_closure *closure, void *args) { ffi_cif *cif; void **arg_area; void *result; void *resp = &result; cif = closure->cif; arg_area = (void**) alloca (cif->nargs * sizeof (void*)); /* this call will initialize ARG_AREA, such that each * element in that array points to the corresponding * value on the stack; and if the function returns * a structure, it will change RESP to point to the * structure return address. */ ffi_prep_incoming_args_SYSV(args, &resp, arg_area, cif); (closure->fun) (cif, resp, arg_area, closure->user_data); /* The result is returned in rax. This does the right thing for result types except for floats; we have to 'mov xmm0, rax' in the caller to correct this. TODO: structure sizes of 3 5 6 7 are returned by reference, too!!! */ return cif->rtype->size > sizeof(void *) ? resp : *(void **)resp; } #else unsigned int FFI_HIDDEN ffi_closure_SYSV_inner (closure, respp, args) ffi_closure *closure; void **respp; void *args; { /* our various things... */ ffi_cif *cif; void **arg_area; cif = closure->cif; arg_area = (void**) alloca (cif->nargs * sizeof (void*)); /* this call will initialize ARG_AREA, such that each * element in that array points to the corresponding * value on the stack; and if the function returns * a structure, it will change RESP to point to the * structure return address. */ ffi_prep_incoming_args_SYSV(args, respp, arg_area, cif); (closure->fun) (cif, *respp, arg_area, closure->user_data); return cif->flags; } #endif /* !X86_WIN64 */ static void ffi_prep_incoming_args_SYSV(char *stack, void **rvalue, void **avalue, ffi_cif *cif) { register unsigned int i; register void **p_argv; register char *argp; register ffi_type **p_arg; argp = stack; #ifdef X86_WIN64 if (cif->rtype->size > sizeof(ffi_arg) || (cif->flags == FFI_TYPE_STRUCT && (cif->rtype->size != 1 && cif->rtype->size != 2 && cif->rtype->size != 4 && cif->rtype->size != 8))) { *rvalue = *(void **) argp; argp += sizeof(void *); } #else if ( cif->flags == FFI_TYPE_STRUCT ) { *rvalue = *(void **) argp; argp += sizeof(void *); } #endif p_argv = avalue; for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++) { size_t z; /* Align if necessary */ if ((sizeof(void*) - 1) & (size_t) argp) { argp = (char *) ALIGN(argp, sizeof(void*)); } #ifdef X86_WIN64 if ((*p_arg)->size > sizeof(ffi_arg) || ((*p_arg)->type == FFI_TYPE_STRUCT && ((*p_arg)->size != 1 && (*p_arg)->size != 2 && (*p_arg)->size != 4 && (*p_arg)->size != 8))) { z = sizeof(void *); *p_argv = *(void **)argp; } else #endif { z = (*p_arg)->size; /* because we're little endian, this is what it turns into. */ *p_argv = (void*) argp; } p_argv++; #ifdef X86_WIN64 argp += (z + sizeof(void*) - 1) & ~(sizeof(void*) - 1); #else argp += z; #endif } return; } #define FFI_INIT_TRAMPOLINE_WIN64(TRAMP,FUN,CTX,MASK) \ { unsigned char *__tramp = (unsigned char*)(TRAMP); \ void* __fun = (void*)(FUN); \ void* __ctx = (void*)(CTX); \ *(unsigned char*) &__tramp[0] = 0x41; \ *(unsigned char*) &__tramp[1] = 0xbb; \ *(unsigned int*) &__tramp[2] = MASK; /* mov $mask, %r11 */ \ *(unsigned char*) &__tramp[6] = 0x48; \ *(unsigned char*) &__tramp[7] = 0xb8; \ *(void**) &__tramp[8] = __ctx; /* mov __ctx, %rax */ \ *(unsigned char *) &__tramp[16] = 0x49; \ *(unsigned char *) &__tramp[17] = 0xba; \ *(void**) &__tramp[18] = __fun; /* mov __fun, %r10 */ \ *(unsigned char *) &__tramp[26] = 0x41; \ *(unsigned char *) &__tramp[27] = 0xff; \ *(unsigned char *) &__tramp[28] = 0xe2; /* jmp %r10 */ \ } /* How to make a trampoline. Derived from gcc/config/i386/i386.c. */ #define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX) \ ({ unsigned char *__tramp = (unsigned char*)(TRAMP); \ unsigned int __fun = (unsigned int)(FUN); \ unsigned int __ctx = (unsigned int)(CTX); \ unsigned int __dis = __fun - (__ctx + 10); \ *(unsigned char*) &__tramp[0] = 0xb8; \ *(unsigned int*) &__tramp[1] = __ctx; /* movl __ctx, %eax */ \ *(unsigned char *) &__tramp[5] = 0xe9; \ *(unsigned int*) &__tramp[6] = __dis; /* jmp __fun */ \ }) #define FFI_INIT_TRAMPOLINE_STDCALL(TRAMP,FUN,CTX,SIZE) \ ({ unsigned char *__tramp = (unsigned char*)(TRAMP); \ unsigned int __fun = (unsigned int)(FUN); \ unsigned int __ctx = (unsigned int)(CTX); \ unsigned int __dis = __fun - (__ctx + 10); \ unsigned short __size = (unsigned short)(SIZE); \ *(unsigned char*) &__tramp[0] = 0xb8; \ *(unsigned int*) &__tramp[1] = __ctx; /* movl __ctx, %eax */ \ *(unsigned char *) &__tramp[5] = 0xe8; \ *(unsigned int*) &__tramp[6] = __dis; /* call __fun */ \ *(unsigned char *) &__tramp[10] = 0xc2; \ *(unsigned short*) &__tramp[11] = __size; /* ret __size */ \ }) /* the cif must already be prep'ed */ ffi_status ffi_prep_closure_loc (ffi_closure* closure, ffi_cif* cif, void (*fun)(ffi_cif*,void*,void**,void*), void *user_data, void *codeloc) { #ifdef X86_WIN64 #define ISFLOAT(IDX) (cif->arg_types[IDX]->type == FFI_TYPE_FLOAT || cif->arg_types[IDX]->type == FFI_TYPE_DOUBLE) #define FLAG(IDX) (cif->nargs>(IDX)&&ISFLOAT(IDX)?(1<<(IDX)):0) if (cif->abi == FFI_WIN64) { int mask = FLAG(0)|FLAG(1)|FLAG(2)|FLAG(3); FFI_INIT_TRAMPOLINE_WIN64 (&closure->tramp[0], &ffi_closure_win64, codeloc, mask); /* make sure we can execute here */ } #else if (cif->abi == FFI_SYSV) { FFI_INIT_TRAMPOLINE (&closure->tramp[0], &ffi_closure_SYSV, (void*)codeloc); } #ifdef X86_WIN32 else if (cif->abi == FFI_STDCALL) { FFI_INIT_TRAMPOLINE_STDCALL (&closure->tramp[0], &ffi_closure_STDCALL, (void*)codeloc, cif->bytes); } #endif /* X86_WIN32 */ #endif /* !X86_WIN64 */ else { return FFI_BAD_ABI; } closure->cif = cif; closure->user_data = user_data; closure->fun = fun; return FFI_OK; } /* ------- Native raw API support -------------------------------- */ #if !FFI_NO_RAW_API ffi_status ffi_prep_raw_closure_loc (ffi_raw_closure* closure, ffi_cif* cif, void (*fun)(ffi_cif*,void*,ffi_raw*,void*), void *user_data, void *codeloc) { int i; if (cif->abi != FFI_SYSV) { return FFI_BAD_ABI; } // we currently don't support certain kinds of arguments for raw // closures. This should be implemented by a separate assembly language // routine, since it would require argument processing, something we // don't do now for performance. for (i = cif->nargs-1; i >= 0; i--) { FFI_ASSERT (cif->arg_types[i]->type != FFI_TYPE_STRUCT); FFI_ASSERT (cif->arg_types[i]->type != FFI_TYPE_LONGDOUBLE); } FFI_INIT_TRAMPOLINE (&closure->tramp[0], &ffi_closure_raw_SYSV, codeloc); closure->cif = cif; closure->user_data = user_data; closure->fun = fun; return FFI_OK; } static void ffi_prep_args_raw(char *stack, extended_cif *ecif) { memcpy (stack, ecif->avalue, ecif->cif->bytes); } /* we borrow this routine from libffi (it must be changed, though, to * actually call the function passed in the first argument. as of * libffi-1.20, this is not the case.) */ extern void ffi_call_SYSV(void (*)(char *, extended_cif *), extended_cif *, unsigned, unsigned, unsigned *, void (*fn)(void)); #ifdef X86_WIN32 extern void ffi_call_STDCALL(void (*)(char *, extended_cif *), extended_cif *, unsigned, unsigned, unsigned *, void (*fn)(void)); #endif /* X86_WIN32 */ void ffi_raw_call(ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *fake_avalue) { extended_cif ecif; void **avalue = (void **)fake_avalue; ecif.cif = cif; ecif.avalue = avalue; /* If the return value is a struct and we don't have a return */ /* value address then we need to make one */ if ((rvalue == NULL) && (cif->rtype->type == FFI_TYPE_STRUCT)) { ecif.rvalue = alloca(cif->rtype->size); } else ecif.rvalue = rvalue; switch (cif->abi) { case FFI_SYSV: ffi_call_SYSV(ffi_prep_args_raw, &ecif, cif->bytes, cif->flags, ecif.rvalue, fn); break; #ifdef X86_WIN32 case FFI_STDCALL: ffi_call_STDCALL(ffi_prep_args_raw, &ecif, cif->bytes, cif->flags, ecif.rvalue, fn); break; #endif /* X86_WIN32 */ default: FFI_ASSERT(0); break; } } #endif #endif /* !__x86_64__ || X86_WIN64 */