rt_gccstream/gcc/config/frv/predicates.md

1544 lines
32 KiB
Markdown
Raw Permalink Normal View History

;; Predicate definitions for Frv.
;; Copyright (C) 2005, 2007 Free Software Foundation, Inc.
;;
;; This file is part of GCC.
;;
;; GCC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.
;;
;; GCC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with GCC; see the file COPYING3. If not see
;; <http://www.gnu.org/licenses/>.
;; Return true if operand is a GPR register.
(define_predicate "integer_register_operand"
(match_code "reg,subreg")
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return GPR_AP_OR_PSEUDO_P (REGNO (op));
})
;; Return 1 is OP is a memory operand, or will be turned into one by
;; reload.
(define_predicate "frv_load_operand"
(match_code "reg,subreg,mem")
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (reload_in_progress)
{
rtx tmp = op;
if (GET_CODE (tmp) == SUBREG)
tmp = SUBREG_REG (tmp);
if (GET_CODE (tmp) == REG
&& REGNO (tmp) >= FIRST_PSEUDO_REGISTER)
op = reg_equiv_memory_loc[REGNO (tmp)];
}
return op && memory_operand (op, mode);
})
;; Return true if operand is a GPR register. Do not allow SUBREG's
;; here, in order to prevent a combine bug.
(define_predicate "gpr_no_subreg_operand"
(match_code "reg")
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) != REG)
return FALSE;
return GPR_OR_PSEUDO_P (REGNO (op));
})
;; Return 1 if operand is a GPR register or a FPR register.
(define_predicate "gpr_or_fpr_operand"
(match_code "reg,subreg")
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
if (GPR_P (regno) || FPR_P (regno) || regno >= FIRST_PSEUDO_REGISTER)
return TRUE;
return FALSE;
})
;; Return 1 if operand is a GPR register or 12-bit signed immediate.
(define_predicate "gpr_or_int12_operand"
(match_code "reg,subreg,const_int,const")
{
if (GET_CODE (op) == CONST_INT)
return IN_RANGE_P (INTVAL (op), -2048, 2047);
if (got12_operand (op, mode))
return true;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return GPR_OR_PSEUDO_P (REGNO (op));
})
;; Return 1 if operand is a GPR register, or a FPR register, or a 12
;; bit signed immediate.
(define_predicate "gpr_fpr_or_int12_operand"
(match_code "reg,subreg,const_int")
{
int regno;
if (GET_CODE (op) == CONST_INT)
return IN_RANGE_P (INTVAL (op), -2048, 2047);
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
if (GPR_P (regno) || FPR_P (regno) || regno >= FIRST_PSEUDO_REGISTER)
return TRUE;
return FALSE;
})
;; Return 1 if operand is a register or 10-bit signed immediate.
(define_predicate "gpr_or_int10_operand"
(match_code "reg,subreg,const_int")
{
if (GET_CODE (op) == CONST_INT)
return IN_RANGE_P (INTVAL (op), -512, 511);
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return GPR_OR_PSEUDO_P (REGNO (op));
})
;; Return 1 if operand is a register or an integer immediate.
(define_predicate "gpr_or_int_operand"
(match_code "reg,subreg,const_int")
{
if (GET_CODE (op) == CONST_INT)
return TRUE;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return GPR_OR_PSEUDO_P (REGNO (op));
})
;; Return true if operand is something that can be an input for a move
;; operation.
(define_predicate "move_source_operand"
(match_code "reg,subreg,const_int,mem,const_double,const,symbol_ref,label_ref")
{
rtx subreg;
enum rtx_code code;
switch (GET_CODE (op))
{
default:
break;
case CONST_INT:
case CONST_DOUBLE:
return immediate_operand (op, mode);
case SUBREG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
subreg = SUBREG_REG (op);
code = GET_CODE (subreg);
if (code == MEM)
return frv_legitimate_address_p_1 (mode, XEXP (subreg, 0),
reload_completed, FALSE, FALSE);
return (code == REG);
case REG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return TRUE;
case MEM:
return frv_legitimate_memory_operand (op, mode, FALSE);
}
return FALSE;
})
;; Return true if operand is something that can be an output for a
;; move operation.
(define_predicate "move_destination_operand"
(match_code "reg,subreg,mem")
{
rtx subreg;
enum rtx_code code;
switch (GET_CODE (op))
{
default:
break;
case SUBREG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
subreg = SUBREG_REG (op);
code = GET_CODE (subreg);
if (code == MEM)
return frv_legitimate_address_p_1 (mode, XEXP (subreg, 0),
reload_completed, FALSE, FALSE);
return (code == REG);
case REG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return TRUE;
case MEM:
return frv_legitimate_memory_operand (op, mode, FALSE);
}
return FALSE;
})
;; Return true if we the operand is a valid destination for a movcc_fp
;; instruction. This means rejecting fcc_operands, since we need
;; scratch registers to write to them.
(define_predicate "movcc_fp_destination_operand"
(match_code "reg,subreg,mem")
{
if (fcc_operand (op, mode))
return FALSE;
return move_destination_operand (op, mode);
})
;; Return true if operand is something that can be an input for a
;; conditional move operation.
(define_predicate "condexec_source_operand"
(match_code "reg,subreg,const_int,mem,const_double")
{
rtx subreg;
enum rtx_code code;
switch (GET_CODE (op))
{
default:
break;
case CONST_INT:
case CONST_DOUBLE:
return ZERO_P (op);
case SUBREG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
subreg = SUBREG_REG (op);
code = GET_CODE (subreg);
if (code == MEM)
return frv_legitimate_address_p_1 (mode, XEXP (subreg, 0),
reload_completed, TRUE, FALSE);
return (code == REG);
case REG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return TRUE;
case MEM:
return frv_legitimate_memory_operand (op, mode, TRUE);
}
return FALSE;
})
;; Return true if operand is something that can be an output for a
;; conditional move operation.
(define_predicate "condexec_dest_operand"
(match_code "reg,subreg,mem")
{
rtx subreg;
enum rtx_code code;
switch (GET_CODE (op))
{
default:
break;
case SUBREG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
subreg = SUBREG_REG (op);
code = GET_CODE (subreg);
if (code == MEM)
return frv_legitimate_address_p_1 (mode, XEXP (subreg, 0),
reload_completed, TRUE, FALSE);
return (code == REG);
case REG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return TRUE;
case MEM:
return frv_legitimate_memory_operand (op, mode, TRUE);
}
return FALSE;
})
;; Return true if operand is a register of any flavor or a 0 of the
;; appropriate type.
(define_predicate "reg_or_0_operand"
(match_code "reg,subreg,const_int,const_double")
{
switch (GET_CODE (op))
{
default:
break;
case REG:
case SUBREG:
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
return register_operand (op, mode);
case CONST_INT:
case CONST_DOUBLE:
return ZERO_P (op);
}
return FALSE;
})
;; Return true if operand is the link register.
(define_predicate "lr_operand"
(match_code "reg")
{
if (GET_CODE (op) != REG)
return FALSE;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (REGNO (op) != LR_REGNO && REGNO (op) < FIRST_PSEUDO_REGISTER)
return FALSE;
return TRUE;
})
;; Return true if operand is a gpr register or a valid memory operand.
(define_predicate "gpr_or_memory_operand"
(match_code "reg,subreg,mem")
{
return (integer_register_operand (op, mode)
|| frv_legitimate_memory_operand (op, mode, FALSE));
})
;; Return true if operand is a gpr register, a valid memory operand,
;; or a memory operand that can be made valid using an additional gpr
;; register.
(define_predicate "gpr_or_memory_operand_with_scratch"
(match_code "reg,subreg,mem")
{
rtx addr;
if (gpr_or_memory_operand (op, mode))
return TRUE;
if (GET_CODE (op) != MEM)
return FALSE;
if (GET_MODE (op) != mode)
return FALSE;
addr = XEXP (op, 0);
if (GET_CODE (addr) != PLUS)
return FALSE;
if (!integer_register_operand (XEXP (addr, 0), Pmode))
return FALSE;
if (GET_CODE (XEXP (addr, 1)) != CONST_INT)
return FALSE;
return TRUE;
})
;; Return true if operand is a fpr register or a valid memory
;; operation.
(define_predicate "fpr_or_memory_operand"
(match_code "reg,subreg,mem")
{
return (fpr_operand (op, mode)
|| frv_legitimate_memory_operand (op, mode, FALSE));
})
;; Return 1 if operand is a 12-bit signed immediate.
(define_predicate "int12_operand"
(match_code "const_int")
{
if (GET_CODE (op) != CONST_INT)
return FALSE;
return IN_RANGE_P (INTVAL (op), -2048, 2047);
})
;; Return 1 if operand is an integer constant that takes 2
;; instructions to load up and can be split into sethi/setlo
;; instructions..
(define_predicate "int_2word_operand"
(match_code "const_int,const_double,symbol_ref,label_ref,const")
{
HOST_WIDE_INT value;
REAL_VALUE_TYPE rv;
long l;
switch (GET_CODE (op))
{
default:
break;
case LABEL_REF:
if (TARGET_FDPIC)
return FALSE;
return (flag_pic == 0);
case CONST:
if (flag_pic || TARGET_FDPIC)
return FALSE;
op = XEXP (op, 0);
if (GET_CODE (op) == PLUS && GET_CODE (XEXP (op, 1)) == CONST_INT)
op = XEXP (op, 0);
return GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF;
case SYMBOL_REF:
if (TARGET_FDPIC)
return FALSE;
/* small data references are already 1 word */
return (flag_pic == 0) && (! SYMBOL_REF_SMALL_P (op));
case CONST_INT:
return ! IN_RANGE_P (INTVAL (op), -32768, 32767);
case CONST_DOUBLE:
if (GET_MODE (op) == SFmode)
{
REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
REAL_VALUE_TO_TARGET_SINGLE (rv, l);
value = l;
return ! IN_RANGE_P (value, -32768, 32767);
}
else if (GET_MODE (op) == VOIDmode)
{
value = CONST_DOUBLE_LOW (op);
return ! IN_RANGE_P (value, -32768, 32767);
}
break;
}
return FALSE;
})
;; Return true if operand is the uClinux PIC register.
(define_predicate "fdpic_operand"
(match_code "reg")
{
if (!TARGET_FDPIC)
return FALSE;
if (GET_CODE (op) != REG)
return FALSE;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (REGNO (op) != FDPIC_REGNO && REGNO (op) < FIRST_PSEUDO_REGISTER)
return FALSE;
return TRUE;
})
;; TODO: Add a comment here.
(define_predicate "fdpic_fptr_operand"
(match_code "reg")
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) != REG)
return FALSE;
if (REGNO (op) != FDPIC_FPTR_REGNO && REGNO (op) < FIRST_PSEUDO_REGISTER)
return FALSE;
return TRUE;
})
;; An address operand that may use a pair of registers, an addressing
;; mode that we reject in general.
(define_predicate "ldd_address_operand"
(match_code "reg,subreg,plus")
{
if (GET_MODE (op) != mode && GET_MODE (op) != VOIDmode)
return FALSE;
return frv_legitimate_address_p_1 (DImode, op, reload_completed, FALSE, TRUE);
})
;; TODO: Add a comment here.
(define_predicate "got12_operand"
(match_code "const")
{
struct frv_unspec unspec;
if (frv_const_unspec_p (op, &unspec))
switch (unspec.reloc)
{
case R_FRV_GOT12:
case R_FRV_GOTOFF12:
case R_FRV_FUNCDESC_GOT12:
case R_FRV_FUNCDESC_GOTOFF12:
case R_FRV_GPREL12:
case R_FRV_TLSMOFF12:
return true;
}
return false;
})
;; Return true if OP is a valid const-unspec expression.
(define_predicate "const_unspec_operand"
(match_code "const")
{
struct frv_unspec unspec;
return frv_const_unspec_p (op, &unspec);
})
;; Return true if operand is an icc register.
(define_predicate "icc_operand"
(match_code "reg")
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
return ICC_OR_PSEUDO_P (regno);
})
;; Return true if operand is an fcc register.
(define_predicate "fcc_operand"
(match_code "reg")
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
return FCC_OR_PSEUDO_P (regno);
})
;; Return true if operand is either an fcc or icc register.
(define_predicate "cc_operand"
(match_code "reg")
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
if (CC_OR_PSEUDO_P (regno))
return TRUE;
return FALSE;
})
;; Return true if operand is an integer CCR register.
(define_predicate "icr_operand"
(match_code "reg")
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
return ICR_OR_PSEUDO_P (regno);
})
;; Return true if operand is an fcc register.
(define_predicate "fcr_operand"
(match_code "reg")
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
return FCR_OR_PSEUDO_P (regno);
})
;; Return true if operand is either an fcc or icc register.
(define_predicate "cr_operand"
(match_code "reg")
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
if (CR_OR_PSEUDO_P (regno))
return TRUE;
return FALSE;
})
;; Return true if operand is a FPR register.
(define_predicate "fpr_operand"
(match_code "reg,subreg")
{
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return FPR_OR_PSEUDO_P (REGNO (op));
})
;; Return true if operand is an even GPR or FPR register.
(define_predicate "even_reg_operand"
(match_code "reg,subreg")
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
if (regno >= FIRST_PSEUDO_REGISTER)
return TRUE;
if (GPR_P (regno))
return (((regno - GPR_FIRST) & 1) == 0);
if (FPR_P (regno))
return (((regno - FPR_FIRST) & 1) == 0);
return FALSE;
})
;; Return true if operand is an odd GPR register.
(define_predicate "odd_reg_operand"
(match_code "reg,subreg")
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
/* Assume that reload will give us an even register. */
if (regno >= FIRST_PSEUDO_REGISTER)
return FALSE;
if (GPR_P (regno))
return (((regno - GPR_FIRST) & 1) != 0);
if (FPR_P (regno))
return (((regno - FPR_FIRST) & 1) != 0);
return FALSE;
})
;; Return true if operand is an even GPR register.
(define_predicate "even_gpr_operand"
(match_code "reg,subreg")
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
if (regno >= FIRST_PSEUDO_REGISTER)
return TRUE;
if (! GPR_P (regno))
return FALSE;
return (((regno - GPR_FIRST) & 1) == 0);
})
;; Return true if operand is an odd GPR register.
(define_predicate "odd_gpr_operand"
(match_code "reg,subreg")
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
/* Assume that reload will give us an even register. */
if (regno >= FIRST_PSEUDO_REGISTER)
return FALSE;
if (! GPR_P (regno))
return FALSE;
return (((regno - GPR_FIRST) & 1) != 0);
})
;; Return true if operand is a quad aligned FPR register.
(define_predicate "quad_fpr_operand"
(match_code "reg,subreg")
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
if (regno >= FIRST_PSEUDO_REGISTER)
return TRUE;
if (! FPR_P (regno))
return FALSE;
return (((regno - FPR_FIRST) & 3) == 0);
})
;; Return true if operand is an even FPR register.
(define_predicate "even_fpr_operand"
(match_code "reg,subreg")
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
if (regno >= FIRST_PSEUDO_REGISTER)
return TRUE;
if (! FPR_P (regno))
return FALSE;
return (((regno - FPR_FIRST) & 1) == 0);
})
;; Return true if operand is an odd FPR register.
(define_predicate "odd_fpr_operand"
(match_code "reg,subreg")
{
int regno;
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
regno = REGNO (op);
/* Assume that reload will give us an even register. */
if (regno >= FIRST_PSEUDO_REGISTER)
return FALSE;
if (! FPR_P (regno))
return FALSE;
return (((regno - FPR_FIRST) & 1) != 0);
})
;; Return true if operand is a 2 word memory address that can be
;; loaded in one instruction to load or store. We assume the stack
;; and frame pointers are suitably aligned, and variables in the small
;; data area. FIXME -- at some we should recognize other globals and
;; statics. We can't assume that any old pointer is aligned, given
;; that arguments could be passed on an odd word on the stack and the
;; address taken and passed through to another function.
(define_predicate "dbl_memory_one_insn_operand"
(match_code "mem")
{
rtx addr;
rtx addr_reg;
if (! TARGET_DWORD)
return FALSE;
if (GET_CODE (op) != MEM)
return FALSE;
if (mode != VOIDmode && GET_MODE_SIZE (mode) != 2*UNITS_PER_WORD)
return FALSE;
addr = XEXP (op, 0);
if (GET_CODE (addr) == REG)
addr_reg = addr;
else if (GET_CODE (addr) == PLUS)
{
rtx addr0 = XEXP (addr, 0);
rtx addr1 = XEXP (addr, 1);
if (GET_CODE (addr0) != REG)
return FALSE;
if (got12_operand (addr1, VOIDmode))
return TRUE;
if (GET_CODE (addr1) != CONST_INT)
return FALSE;
if ((INTVAL (addr1) & 7) != 0)
return FALSE;
addr_reg = addr0;
}
else
return FALSE;
if (addr_reg == frame_pointer_rtx || addr_reg == stack_pointer_rtx)
return TRUE;
return FALSE;
})
;; Return true if operand is a 2 word memory address that needs to use
;; two instructions to load or store.
(define_predicate "dbl_memory_two_insn_operand"
(match_code "mem")
{
if (GET_CODE (op) != MEM)
return FALSE;
if (mode != VOIDmode && GET_MODE_SIZE (mode) != 2*UNITS_PER_WORD)
return FALSE;
if (! TARGET_DWORD)
return TRUE;
return ! dbl_memory_one_insn_operand (op, mode);
})
;; Return true if operand is a memory reference suitable for a call.
(define_predicate "call_operand"
(match_code "reg,subreg,const_int,const,symbol_ref")
{
if (GET_MODE (op) != mode && mode != VOIDmode && GET_CODE (op) != CONST_INT)
return FALSE;
if (GET_CODE (op) == SYMBOL_REF)
return !TARGET_LONG_CALLS || SYMBOL_REF_LOCAL_P (op);
/* Note this doesn't allow reg+reg or reg+imm12 addressing (which should
never occur anyway), but prevents reload from not handling the case
properly of a call through a pointer on a function that calls
vfork/setjmp, etc. due to the need to flush all of the registers to stack. */
return gpr_or_int12_operand (op, mode);
})
;; Return true if operand is a memory reference suitable for a
;; sibcall.
(define_predicate "sibcall_operand"
(match_code "reg,subreg,const_int,const")
{
if (GET_MODE (op) != mode && mode != VOIDmode && GET_CODE (op) != CONST_INT)
return FALSE;
/* Note this doesn't allow reg+reg or reg+imm12 addressing (which should
never occur anyway), but prevents reload from not handling the case
properly of a call through a pointer on a function that calls
vfork/setjmp, etc. due to the need to flush all of the registers to stack. */
return gpr_or_int12_operand (op, mode);
})
;; Return 1 if operand is an integer constant with the bottom 16 bits
;; clear.
(define_predicate "upper_int16_operand"
(match_code "const_int")
{
if (GET_CODE (op) != CONST_INT)
return FALSE;
return ((INTVAL (op) & 0xffff) == 0);
})
;; Return 1 if operand is a 16-bit unsigned immediate.
(define_predicate "uint16_operand"
(match_code "const_int")
{
if (GET_CODE (op) != CONST_INT)
return FALSE;
return IN_RANGE_P (INTVAL (op), 0, 0xffff);
})
;; Returns 1 if OP is either a SYMBOL_REF or a constant.
(define_predicate "symbolic_operand"
(match_code "symbol_ref,const,const_int")
{
enum rtx_code c = GET_CODE (op);
if (c == CONST)
{
/* Allow (const:SI (plus:SI (symbol_ref) (const_int))). */
return GET_MODE (op) == SImode
&& GET_CODE (XEXP (op, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT;
}
return c == SYMBOL_REF || c == CONST_INT;
})
;; Return true if operator is a kind of relational operator.
(define_predicate "relational_operator"
(match_code "eq,ne,le,lt,ge,gt,leu,ltu,geu,gtu")
{
return (integer_relational_operator (op, mode)
|| float_relational_operator (op, mode));
})
;; Return true if OP is a relational operator suitable for CCmode,
;; CC_UNSmode or CC_NZmode.
(define_predicate "integer_relational_operator"
(match_code "eq,ne,le,lt,ge,gt,leu,ltu,geu,gtu")
{
if (mode != VOIDmode && mode != GET_MODE (op))
return FALSE;
/* The allowable relations depend on the mode of the ICC register. */
switch (GET_CODE (op))
{
default:
return FALSE;
case EQ:
case NE:
case LT:
case GE:
return (GET_MODE (XEXP (op, 0)) == CC_NZmode
|| GET_MODE (XEXP (op, 0)) == CCmode);
case LE:
case GT:
return GET_MODE (XEXP (op, 0)) == CCmode;
case GTU:
case GEU:
case LTU:
case LEU:
return (GET_MODE (XEXP (op, 0)) == CC_NZmode
|| GET_MODE (XEXP (op, 0)) == CC_UNSmode);
}
})
;; Return true if operator is a floating point relational operator.
(define_predicate "float_relational_operator"
(match_code "eq,ne,le,lt,ge,gt")
{
if (mode != VOIDmode && mode != GET_MODE (op))
return FALSE;
switch (GET_CODE (op))
{
default:
return FALSE;
case EQ: case NE:
case LE: case LT:
case GE: case GT:
#if 0
case UEQ: case UNE:
case ULE: case ULT:
case UGE: case UGT:
case ORDERED:
case UNORDERED:
#endif
return GET_MODE (XEXP (op, 0)) == CC_FPmode;
}
})
;; Return true if operator is EQ/NE of a conditional execution
;; register.
(define_predicate "ccr_eqne_operator"
(match_code "eq,ne")
{
enum machine_mode op_mode = GET_MODE (op);
rtx op0;
rtx op1;
int regno;
if (mode != VOIDmode && op_mode != mode)
return FALSE;
switch (GET_CODE (op))
{
default:
return FALSE;
case EQ:
case NE:
break;
}
op1 = XEXP (op, 1);
if (op1 != const0_rtx)
return FALSE;
op0 = XEXP (op, 0);
if (GET_CODE (op0) != REG)
return FALSE;
regno = REGNO (op0);
if (op_mode == CC_CCRmode && CR_OR_PSEUDO_P (regno))
return TRUE;
return FALSE;
})
;; Return true if operator is a minimum or maximum operator (both
;; signed and unsigned).
(define_predicate "minmax_operator"
(match_code "smin,smax,umin,umax")
{
if (mode != VOIDmode && mode != GET_MODE (op))
return FALSE;
switch (GET_CODE (op))
{
default:
return FALSE;
case SMIN:
case SMAX:
case UMIN:
case UMAX:
break;
}
return TRUE;
})
;; Return true if operator is an integer binary operator that can
;; executed conditionally and takes 1 cycle.
(define_predicate "condexec_si_binary_operator"
(match_code "plus,minus,and,ior,xor,ashift,ashiftrt,lshiftrt")
{
enum machine_mode op_mode = GET_MODE (op);
if (mode != VOIDmode && op_mode != mode)
return FALSE;
switch (GET_CODE (op))
{
default:
return FALSE;
case PLUS:
case MINUS:
case AND:
case IOR:
case XOR:
case ASHIFT:
case ASHIFTRT:
case LSHIFTRT:
return TRUE;
}
})
;; Return true if operator is an integer binary operator that can be
;; executed conditionally by a media instruction.
(define_predicate "condexec_si_media_operator"
(match_code "and,ior,xor")
{
enum machine_mode op_mode = GET_MODE (op);
if (mode != VOIDmode && op_mode != mode)
return FALSE;
switch (GET_CODE (op))
{
default:
return FALSE;
case AND:
case IOR:
case XOR:
return TRUE;
}
})
;; Return true if operator is an integer division operator that can
;; executed conditionally.
(define_predicate "condexec_si_divide_operator"
(match_code "div,udiv")
{
enum machine_mode op_mode = GET_MODE (op);
if (mode != VOIDmode && op_mode != mode)
return FALSE;
switch (GET_CODE (op))
{
default:
return FALSE;
case DIV:
case UDIV:
return TRUE;
}
})
;; Return true if operator is an integer unary operator that can
;; executed conditionally.
(define_predicate "condexec_si_unary_operator"
(match_code "not,neg")
{
enum machine_mode op_mode = GET_MODE (op);
if (mode != VOIDmode && op_mode != mode)
return FALSE;
switch (GET_CODE (op))
{
default:
return FALSE;
case NEG:
case NOT:
return TRUE;
}
})
;; Return true if operator is an addition or subtraction
;; expression. Such expressions can be evaluated conditionally by
;; floating-point instructions.
(define_predicate "condexec_sf_add_operator"
(match_code "plus,minus")
{
enum machine_mode op_mode = GET_MODE (op);
if (mode != VOIDmode && op_mode != mode)
return FALSE;
switch (GET_CODE (op))
{
default:
return FALSE;
case PLUS:
case MINUS:
return TRUE;
}
})
;; Return true if operator is a conversion-type expression that can be
;; evaluated conditionally by floating-point instructions.
(define_predicate "condexec_sf_conv_operator"
(match_code "abs,neg")
{
enum machine_mode op_mode = GET_MODE (op);
if (mode != VOIDmode && op_mode != mode)
return FALSE;
switch (GET_CODE (op))
{
default:
return FALSE;
case NEG:
case ABS:
return TRUE;
}
})
;; Return true if OP is an integer binary operator that can be
;; combined with a (set ... (compare:CC_NZ ...)) pattern.
(define_predicate "intop_compare_operator"
(match_code "plus,minus,and,ior,xor,ashift,ashiftrt,lshiftrt")
{
if (mode != VOIDmode && GET_MODE (op) != mode)
return FALSE;
switch (GET_CODE (op))
{
default:
return FALSE;
case PLUS:
case MINUS:
case AND:
case IOR:
case XOR:
case ASHIFTRT:
case LSHIFTRT:
return GET_MODE (op) == SImode;
}
})
;; Return 1 if operand is a register or 6-bit signed immediate.
(define_predicate "fpr_or_int6_operand"
(match_code "reg,subreg,const_int")
{
if (GET_CODE (op) == CONST_INT)
return IN_RANGE_P (INTVAL (op), -32, 31);
if (GET_MODE (op) != mode && mode != VOIDmode)
return FALSE;
if (GET_CODE (op) == SUBREG)
{
if (GET_CODE (SUBREG_REG (op)) != REG)
return register_operand (op, mode);
op = SUBREG_REG (op);
}
if (GET_CODE (op) != REG)
return FALSE;
return FPR_OR_PSEUDO_P (REGNO (op));
})
;; Return 1 if operand is a 6-bit signed immediate.
(define_predicate "int6_operand"
(match_code "const_int")
{
if (GET_CODE (op) != CONST_INT)
return FALSE;
return IN_RANGE_P (INTVAL (op), -32, 31);
})
;; Return 1 if operand is a 5-bit signed immediate.
(define_predicate "int5_operand"
(match_code "const_int")
{
return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), -16, 15);
})
;; Return 1 if operand is a 5-bit unsigned immediate.
(define_predicate "uint5_operand"
(match_code "const_int")
{
return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), 0, 31);
})
;; Return 1 if operand is a 4-bit unsigned immediate.
(define_predicate "uint4_operand"
(match_code "const_int")
{
return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), 0, 15);
})
;; Return 1 if operand is a 1-bit unsigned immediate (0 or 1).
(define_predicate "uint1_operand"
(match_code "const_int")
{
return GET_CODE (op) == CONST_INT && IN_RANGE_P (INTVAL (op), 0, 1);
})
;; Return 1 if operand is a valid ACC register number.
(define_predicate "acc_operand"
(match_code "reg,subreg")
{
return ((mode == VOIDmode || mode == GET_MODE (op))
&& REG_P (op) && ACC_P (REGNO (op))
&& ((REGNO (op) - ACC_FIRST) & ~ACC_MASK) == 0);
})
;; Return 1 if operand is a valid even ACC register number.
(define_predicate "even_acc_operand"
(match_code "reg,subreg")
{
return acc_operand (op, mode) && ((REGNO (op) - ACC_FIRST) & 1) == 0;
})
;; Return 1 if operand is zero or four.
(define_predicate "quad_acc_operand"
(match_code "reg,subreg")
{
return acc_operand (op, mode) && ((REGNO (op) - ACC_FIRST) & 3) == 0;
})
;; Return 1 if operand is a valid ACCG register number.
(define_predicate "accg_operand"
(match_code "reg,subreg")
{
return ((mode == VOIDmode || mode == GET_MODE (op))
&& REG_P (op) && ACCG_P (REGNO (op))
&& ((REGNO (op) - ACCG_FIRST) & ~ACC_MASK) == 0);
})