/* * This file is part of the Owl Positioning System (OwlPS) project. * It is subject to the copyright notice and license terms in the * COPYRIGHT.t2t file found in the top-level directory of this * distribution and at * https://code.lm7.fr/mcy/owlps/src/master/COPYRIGHT.t2t * No part of the OwlPS Project, including this file, may be copied, * modified, propagated, or distributed except according to the terms * contained in the COPYRIGHT.t2t file; the COPYRIGHT.t2t file must be * distributed along with this file, either separately or by replacing * this notice by the COPYRIGHT.t2t file's contents. */ #include "referencepoint.hh" #include "calibrationrequest.hh" #include "stock.hh" using namespace std ; /* *** Constructors *** */ /** * Clears #requests, but does not deallocate the values pointed by * the elements into it. */ ReferencePoint::~ReferencePoint() { requests.clear() ; } /* *** Read accessors *** */ double ReferencePoint:: average_measurements(const std::string &mac_transmitter) const { unordered_map measurements( get_all_measurements(mac_transmitter)) ; double avg = 0 ; int n_ss = 0 ; for (auto i = measurements.begin() ; i != measurements.end() ; ++i) { avg += i->second.get_average_dbm() ; ++n_ss ; } return (avg / n_ss) ; } unordered_map ReferencePoint:: get_all_measurements() const { unordered_map all ; for (auto i = requests.begin() ; i != requests.end() ; ++i) { unordered_map measurements = (*i)->get_measurements() ; for (auto j = measurements.begin() ; j != measurements.end() ; ++j) if (! all.insert(*j).second) all[j->first].merge(j->second) ; } return all ; } unordered_map ReferencePoint:: get_all_measurements(const string &mac_transmitter) const { unordered_map all ; vector requests_trx( get_requests(mac_transmitter)) ; for (auto i = requests_trx.begin() ; i != requests_trx.end() ; ++i) { unordered_map measurements = (*i)->get_measurements() ; for (auto j = measurements.begin() ; j != measurements.end() ; ++j) if (! all.insert(*j).second) all[j->first].merge(j->second) ; } return all ; } /** * @param mac_transmitter The MAC address of the transmitting mobile. * * @returns A vector containing all the requests sent by the mobile. * The returned vector is empty if no request was sent by the mobile. */ const vector ReferencePoint:: get_requests(const string &mac_transmitter) const { vector res ; for (auto i = requests.begin() ; i != requests.end() ; ++i) if ((*i)->get_mobile()->get_mac_addr() == mac_transmitter) res.push_back(*i) ; return res ; } /* *** Write accessors *** */ void ReferencePoint::delete_request(const CalibrationRequest *const r) { for (auto i = requests.begin() ; i != requests.end() ; ++i) if (*i == r) { requests.erase(i) ; return ; } } /** * Note that the requests pointed by the elements of #requests are * actually deleted from the Stock. */ void ReferencePoint::delete_requests() { #ifndef NDEBUG int stock_nb_requests = Stock::nb_calibration_requests() ; #endif // NDEBUG for (auto r = requests.begin() ; r != requests.end() ; ++r) Stock::delete_calibration_request(**r) ; assert(Stock::nb_calibration_requests() == stock_nb_requests - requests.size()) ; requests.clear() ; } /** * Note that the requests pointed by the elements of #requests are * actually deleted from the Stock. * * @returns `true` if at least one request was deleted. * @returns `false` if the ReferencePoint was left untouched. */ bool ReferencePoint::delete_generated_requests(void) { unsigned int nb_requests = requests.size() ; auto r = requests.begin() ; while (r != requests.end()) { assert(*r) ; unordered_map::const_iterator cp ; if (! (*r)->get_mobile()) goto delete_request ; // Check if the request was sent by a CP for (cp = Stock::get_cps().begin() ; cp != Stock::get_cps().end() ; ++cp) if ((*r)->get_mobile()->get_mac_addr() == cp->second.get_mac_addr()) break ; if (cp != Stock::get_cps().end()) // r was sent by a CP { ++r ; continue ; // Do not delete r } // r is not associated with a CP, delete it delete_request: Stock::delete_calibration_request(**r) ; r = requests.erase(r) ; } return nb_requests != requests.size() ; } /* *** Operations *** */ /** * Before to compute the similarity, all the measurements containted in * #requests are put together, as if it was one big request. * * Note: to compute the similarity between two requests, one should use * Request::similarity(). */ float ReferencePoint::similarity(const Request &source) const { assert(! requests.empty()) ; unordered_map source_measurements(source.get_measurements()) ; unordered_map all_measurements(get_all_measurements()) ; PosUtil::complete_with_dummy_measurements( all_measurements, source_measurements) ; return PosUtil::similarity( all_measurements, source_measurements) ; } /** * @param cp_mac The MAC address of the CapturePoint to work on. * * @returns The Friis index associated to the CapturePoint. * @returns 0 if the CP is unknown at this ReferencePoint. */ float ReferencePoint:: friis_index_for_cp(const string &cp_mac) const { const CapturePoint &cp = Stock::get_cp(cp_mac) ; double const_term = cp.friis_constant_term() ; int nb_friis_idx = 0 ; double friis_idx_sum = friis_indexes_for_cp(cp, const_term, nb_friis_idx) ; if (nb_friis_idx == 0) return 0 ; return friis_idx_sum / nb_friis_idx ; } /** * Computes a Friis index sum for the distance CP-ReferencePoint, * based on the measurements of this CP that are present in the * ReferencePoint. To obtain the real (averaged) Friis index, one * has to divide the returned sum by the number of indexes. * * @param[in] cp The CapturePoint to work on. * @param[in] const_term The "constant" part of the computation. * @param[out] nb_indexes The number of indexes computed. * * @returns The sum of all Friis indexes for the CapturePoint. * @returns 0 if the CP is unknown at this ReferencePoint. */ float ReferencePoint:: friis_indexes_for_cp(const CapturePoint &cp, const double const_term, int &nb_indexes) const { nb_indexes = 0 ; double friis_idx_sum = 0 ; const string &cp_mac = cp.get_mac_addr() ; float distance = this->distance(cp.get_coordinates()) ; /* * Compute an index for the CP's Measurement in each Request in the * ReferencePoint. The Friis index for the CP is the average of all * these indexes (we do not compute the average in this function). */ for (auto request = requests.begin() ; request != requests.end() ; ++request) { const unordered_map &measurements = (*request)->get_measurements() ; auto measurement = measurements.find(cp_mac) ; if (measurement != measurements.end()) { float ss = measurement->second.get_average_dbm() ; assert((*request)->get_mobile()) ; float mobile_gain = (*request)->get_mobile()->get_antenna_gain() ; float mobile_pow = (*request)->get_mobile()->get_trx_power() ; friis_idx_sum += (const_term + mobile_gain + mobile_pow - ss) / (10 * log10(distance)) ; ++nb_indexes ; } } return friis_idx_sum ; } /** * Computes a Friis index for the distance CP-ReferencePoint, based on a * given packet (`pkt_id),` of a measurement of this CP present in the * ReferencePoint. This measurement is the first found in the * ReferencePoint. This works well when we keep only one calibration * request per reference point. * * @param cp_mac The MAC address of the CapturePoint to work on. * @param pkt_id The packet ID to look for. * * @returns The Friis index for this CP and packet. * @returns 0 if the CP is unknown at this ReferencePoint, or if there * is no packet with the wanted ID. */ float ReferencePoint:: friis_index_for_cp(const string &cp_mac, const pkt_id_t pkt_id) const { const CapturePoint &cp = Stock::get_cp(cp_mac) ; double const_term = cp.friis_constant_term() ; float distance = this->distance(cp.get_coordinates()) ; float friis_idx = 0 ; for (auto request = requests.begin() ; request != requests.end() ; ++request) { const unordered_map &measurements = (*request)->get_measurements() ; auto measurement = measurements.find(cp_mac) ; if (measurement == measurements.end()) continue ; ss_t ss = measurement->second.get_ss(pkt_id) ; if (ss == 0) continue ; assert((*request)->get_mobile()) ; float mobile_gain = (*request)->get_mobile()->get_antenna_gain() ; float mobile_pow = (*request)->get_mobile()->get_trx_power() ; friis_idx = (const_term + mobile_gain + mobile_pow - ss) / (10 * log10(distance)) ; break ; } return friis_idx ; } /* *** Operators *** */ ReferencePoint& ReferencePoint::operator=(const ReferencePoint &source) { if (this == &source) return *this ; this->Point3D::operator=(source) ; requests = source.requests ; return *this ; } bool ReferencePoint::operator==(const ReferencePoint &source) const { if (this == &source) return true ; return this->Point3D::operator==(source) && requests == source.requests ; } ostream &operator<<(ostream &os, const ReferencePoint &rp) { // Coordinates os << static_cast(rp) ; // List of requests if (rp.requests.empty()) os << "\nNo request." << '\n' ; else for (auto i = rp.requests.begin() ; i != rp.requests.end() ; ++i) os << '\n' << **i ; return os ; }